3.1.2. Aspect Systems
The ability to make arc-sec-quality images and accurately co-align the images with other solar observations, depends on knowing the orientation of the collimators with respect to the direction to the Sun at all times. This essential aspect information is obtained with the Solar Aspect System (SAS), which provides pitch and yaw measurements relative to the solar limbs to arcsecond accuracy on time scales of tens of ms, and two redundant Roll Angle Systems – a CCD-based version (CCD RAS) and a photomultiplier-based version (PMT RAS) – that each provide the roll angle to arc min accuracy several times per rotation with respect to the fixed stars. Full details of these systems are given by Zehnder et al. (2002) for the SAS and CCD RAS and by Hurford and Curtis (2002) for the PMTRAS.

3.1.3. Solar Aspect System (SAS)
The Solar Aspect System (SAS) provides (1) high-resolution, high-bandwidth aspect information for image reconstruction, (2) monitoring of the relative twist of the two grid trays, and (3) full-Sun white-light images, on occasion, for co-alignment with ground-based images. It consists of three identical lens-filter assemblies mounted on the forward grid tray to form full-Sun images on three 2048 × 13-μm linear diode arrays mounted on the rear grid tray. Simultaneous exposures of three chords of the focused solar images are made every 10 ms by each of the arrays. A digital threshold algorithm is used to select four (or more, commandable) pixels that span each solar limb for inclusion in the telemetry. These digitized pixel outputs allow six precise locations of the solar limb to be obtained on the ground by interpolation, thus providing knowledge of Sun center in pitch and yaw to 1.5 arc sec per readout (3σ).

3.1.4. Roll Angle System (RAS)
For image reconstruction on the ground (no impact on real-time spacecraft operations), knowledge of relative roll is required at all times to 3 arc min (3σ). Since all sources of torque on the spacecraft are weak, the required information can be obtained with a star scanner that samples the roll orientation at least once per rotation. Interpolation between measurements allows the roll orientation to be determined at intermediate times with the required accuracy. The CCD RAS consists of a CCD array and electronics behind an f/1.0, 50-mm lens. A sunshade limits the field of view so that a 30° band is swept out across the sky at 15° to orthogonal to the spin axis. As the spacecraft rotates, each detected star generates a brief spike in the output of one or two pixels, whose timing defines the roll orientation. For +2 magnitude stars, the detection signal-to-noise is 15:1. Allowing for Earth occultation and the recovery time from anticipated earthshine saturation, at least one (and typically seven) such star(s) will be detected each rotation throughout the mission. Measurements of only one star, averaged over a minute, allow the roll angle to be determined to 2.7 arc min (3σ).
The Aspect Data Processor (ADP) receives the data from the SAS and RAS, performs on-line processing. The PMTRAS, consisting of a photomultiplier (PMT) behind a slit to scan for bright stars, was included for redundancy.

3.2. SPECTROMETER

Figure 8 shows a cutaway of the Spectrometer, described in detail in Smith et al. (2002). The RHESSI germanium detector (GeD) design provides energy coverage from 3 keV to 17 MeV with a single mechanically robust detector. The largest, readily available, hyperpure (n-type) coaxial germanium material (7.1-cm diam × 8.5-cm long) was used. The inner electrode is segmented into two contacts that collect charge from two electrically independent detector segments, to provide the equivalent of a ∼1.5-cm thick planar GeD in front of a ∼7 cm thick coaxial GeD. The top and curved outer surfaces are implanted with a thin (0.3 micron) boron layer to provide a surface transparent down to 3 keV X-rays. With advanced Field Effect Transistors (FETs) and state-of-the-art electronics, the front segments achieve a 3-keV energy threshold.

The front segment thickness is chosen to stop photons up to ∼250 keV (Figure 4(c)), where photoelectric absorption dominates, while minimizing the active volume for background. Front-incident photons that Compton-scatter, and back-
ground photons or particles entering from the rear, are rejected by anticoincidence with the rear segment; a passive, graded-Z (Pb, Cu, Sn) ring around the front segment absorbs hard X-rays incident from the side, to provide the low background of a phosphor-type scintillation detector. Photons with energies from \(\sim 250 \text{ keV} \) to 17 MeV, including all nuclear gamma-ray lines, stop primarily in the thick rear segment alone, with smaller fractions stopping in the front segment, depositing energy in both the front and rear segments, or in two or more GeDs. All these modes contribute to the total photopoint efficiency (Figure 4(c)).

The intense hard X-ray fluxes that usually accompany large gamma-ray line flares are absorbed by the front segment, so the rear segment will always count at moderate rates. This is essential for gamma-ray line measurements where optimal spectral resolution and low dead time are desired. To accommodate the large dynamic range \((\sim 10^3)\) in soft X-ray flux from microflares to very large flares, two sets of aluminum disk attenuators (also called shutters) can be moved in front of the GeDs to absorb low energy (see Figure 4(c)) photons. These attenuators are inserted automatically by heating temperature-sensitive Shape Memory Alloy (SMA) actuators when the count rate increases above pre-set values. The attenuation stays in for a fixed duration currently \((\sim 5 \text{ min})\), but programmable and then are removed. The cycle repeats as long as the rates stay high.

The GeDs in their modules are mounted on an aluminum cold plate suspended on fiberglass straps to reduce thermal conduction. This is surrounded by multi-layer radiation shields and enclosed in an evacuated cryostat. The cryostat’s curved sidewall is ribbed thin-wall aluminum near the GeDs to provide \(\sim 20 \text{ keV} \) threshold for non-solar X-ray/gamma-rays incident on the side.

The GeDs are cooled on-orbit by a single Sunpower Inc. M77B single-stage, counterbalanced, Stirling-cycle cryocooler. The interface is a flexible aluminum/sapphire cold finger designed to minimize coupling of microphonics into the GeDs and to allow a structured cooldown to avoid condensation of contaminants onto the GeDs. The cryocooler uses a gas bearing/flexure system to prevent contact between moving parts, and a moving-magnet motor to eliminate flexible motor leads. This cooler provides up to 4 W of cooling at 77 K, at an input power of 100 W. The cryocooler is mounted in an external cavity between the radiator and cryostat to minimize losses in the heat rejection path. The anti-Sun facing heat rejection radiator (76 cm diameter) is thermally coupled to the cryostat housing to provide a large thermal mass. The equilibrium radiator temperature is in the range of \(-15 \text{ °C}\) to \(-30 \text{ °C}\).

Radiation damage of the GeDs is of concern since RHESSI passes through the South Atlantic Anomaly (SAA) on about 5 orbits a day. Bombardment by high energy SAA protons produces traps in the GeDs which degrade the spectral resolution with time. The Spectrometer is designed with the capability to anneal the GeDs, by heating them up to \(\sim 100 \text{ °C} \), to recover the resolution. This is not expected to be needed within the nominal two-year mission lifetime.
3.3. Instrument Electronics

Each GeD is biased at between 4 and 5 kV by a separate adjustable high-voltage power supply. Photons interacting in a GeD generate charge pulses, which are collected and amplified by a transistor-reset Charge Sensitive Amplifier (CSA) with an advanced 4-terminal type FET to provide the best resolution and high-count rate performance. The CSAs and the high voltage filters are mounted directly to the Spectrometer (Figure 8).

The Instrument Data Processing Unit, described by Curtis et al. (2002) (see Figures 9 and 10) contains all the remaining Spectrometer electronics. The signals from the CSAs are shaped, amplified, processed, and digitized by nine identical Detector Interface Boards (DIBs), one for each GeD. The DIBs feature (1) quasitrapezoidal shaping to compensate for ballistic deficit effects of the charge collection in these large GeDs, (2) dual fast/slow signal processing chains for pulse-pileup rejection, and (3) ultrahigh rate counting in broad energy bands with the fast chain with live time measurements every 0.5 ms to preserve the imaging capability.

The GeD front segment energy range is ~ 3 keV up to ~ 2.7 MeV in 8192 channels with ~ 0.33 keV ch⁻¹. The rear segments cover from ~ 20 keV to ~ 2.7 MeV and have an additional low-gain slow amplifier to cover from ~ 2.7 MeV up to ~ 17 MeV (2.7 keV ch⁻¹). For each detected photon, 14 bits of energy information and the time of arrival to 1 microsecond are encoded together with detector identification and live time into a 24-bit event word. Normally every photon is stored in the spacecraft mass memory and then telemetered to the ground.
Figure 10. [See CD-ROM for color version]. Schematic showing the location of instrument and spacecraft components on the RHESSI spacecraft. The acronyms in the top view are: Fine Sun Sensor (FSS), Solid State Recorder (SSR), Cryocooler Power Converter (CPC), Instrument Power Converter (IPC), Instrument Data Processing Unit (IDPU); in the bottom view, Roll Angle System (RAS), Photomultiplier Roll Angle System (PMT RAS), Inertial Adjustment Device (IAD), Spacecraft Electronics Module (SEM).

A 300-micron thick, 1 cm2 area, passivated-ion-implanted (PPI) silicon detector with a CSA/amp/discriminator electronics, similar to those flown on the Wind 3D Plasma and Energetic Particle instrument (Lin et al., 1995), monitors energetic particle fluxes. The IDPU low voltage power converter provides the 100-V bias supply for the particle detector. Two discriminator levels provide measurements of energetic (\gtrsim 1 MeV) electron and (\gtrsim 10 MeV proton fluxes.
The Controller card collects and formats data from the DIBs and the particle detector, and passes the formatted data to the spacecraft over a high speed (>20 Mbps) bus. A microprocessor on the Controller card controls the IDPU, including the cooler and shutters, and interfaces to the spacecraft over a low speed serial interface for receipt of ground commands and exchange of housekeeping and status information.

A space-qualified power converter (CPC) consisting of two amplifiers was developed for the cryocooler. A pulse-width-modulated amplifier amplifies a temperature dependent IDPU-provided sine wave at 59.6 Hz to drive up to 100 watts peak into the voice-coil-like cryocooler load of \(\sim 1.2 \, \Omega \). The second amplifier, driven from an IDPU-provided phase-shifted temperature-dependent sine wave at the same frequency, powers the cryocooler counterbalancer to minimize microphonics.

An Instrument Power Controller (IPC) contains the low and high voltage converters for the instrument. The CPC and IPC are housed in physically separate boxes from the rest of the IDPU (Figure 10).

4. Spacecraft

4.1. Structure and Mechanisms

The RHESSI spacecraft bus (Figure 10) was designed and manufactured by Spectrum Astro, Inc. of Gilbert, AZ. The primary structure supports all spacecraft components during the launch environment and maintains the relative alignment of the Imager and the Spectrometer. Most of the spacecraft components are located on an octagonal aluminum honeycomb equipment deck that is mounted to the spacecraft aft ring. The Imager tube is supported around its center of gravity by three flexure mounts to a machined aluminum imager support ring mounted on the forward side of the equipment deck. The Spectrometer is attached to the spacecraft aft ring with its large thermal radiator flush with the launch vehicle separation plane for an unobstructed field of view.

The solar array consists of four identical wings, each with two panels connected by a hinge, located symmetrically around the equipment deck. A metal tip-mass at the end of each wing increases the deployed spin-axis moment of inertia for spinning stability. To align the spin axis closer to the imager boresight on orbit, the spacecraft spin balance can be fine-tuned with two controllable Inertia Adjustment Devices (IADs) – motorized linear drive screws that move two of the solar array wings. The mid-wing and root hinges of each solar array wing use steel tape-measure material to provide both the deployment force and a rigid latch in the deployed state. Shape Memory Alloy (SMA) actuated release devices preload the array panels against snubbers in the stowed configuration. These actuators stretch to snap the titanium tiedown bolts to release the wings. The solar cells are exposed
on the outboard panel so that some power is generated even before the panels are deployed.

4.2. Attitude Control

The Attitude Control Subsystem (ACS) enables RHESSI to follow the Sun over time autonomously with a 3σ pointing accuracy of 0.14° (8.4 arc min). The primary attitude sensor is an Adcole Inc. fine Sun sensor (FSS) with a ±32° field of view and 0.005° resolution, that is mounted to the front of the imager tube. The pointing error measured by the FSS, together with local magnetic field measurements made by the spacecraft magnetometer, are inputs to the ACS control algorithms in the flight software. This runs on the RAD6000 flight processor in the Command and Data Handling (C&DH) subsystem to drive three orthogonally-mounted Ithaco Inc. 60 Ampère-meter Electromagnetic Torque Rods to maintain the spacecraft attitude. Finally, a set of eight coarse sun sensor cells (two mounted on each solar array wing) allow the ACS subsystem to acquire the Sun from any initial attitude after separation from the launch vehicle.

The ACS flight software provides an Acquisition mode which damps rates after launch vehicle separation, a Precession mode which orients the spin axis toward the sun from any starting attitude, a Spin Control mode which adjusts the vehicle spin rate to a commandable value, and a Normal mode which is used during most mission operations to keep the spin axis pointed at the Sun. The ACS also has an Idle mode which does not actively control the vehicle attitude. Because RHESSI is designed to be a stable spinner, the idle mode provides a safe mode that is entered in the event of an anomaly. The ACS flight software is auto-coded using MatrixX software and integrated with the remainder of the flight software.

4.3. Command and Data Handling

The Spacecraft Electronics Module (SEM, Figure 10) houses the Charge Control Board (CCB), the Power Control Board (PCB), and the Auxiliary Driver Board (ADB) for the Electrical Power Subsystem (EPS); and Communications Interface Board (CIB), the Payload and Attitude Control Interface (PACI) board, and the flight computer (CPU) board of the Command and Data Handling (C&DH) subsystem. A separate Solid State Recorder (SSR, Figure 10), built by SEAKR Engineering, provides 4 gigabytes of solid-state memory for science data storage.

The Instrument Data Processing Unit provides formatted telemetry packets of science data directly to the SSR recording high-speed parallel interface. Science data are played back from the SSR for downlink via a high-speed parallel interface with the CIB, the command and telemetry interface for the SEM to the RF transponder. The CIB is powered from the essential bus and is operational at all times. It provides command decoding capability for critical functions including the reset and power control of the flight computer, control of the telemetry transmitter, and adjustment of the battery charge control parameters. This hardware command
decoding capability of the CIB provides an operational backup for faults which result in the shutdown of CPU or software.

The Payload and Attitude Control Interface (PACI) board is responsible for telemetry encoding and data acquisition. It digitally encodes analog voltage, current and temperature data, and formats telemetry frames for downlink and on-board storage. It provides serial communications interfaces for control and monitoring of the SSR and the IDPU. The PACI board is powered by the essential power bus and is always producing hardware state of health telemetry packets; whenever the transmitter is powered on these packets are transmitted to the ground. This feature along with the CIB hardware command decoding, allows problems to be diagnosed and fixed from the ground, even without the CPU or software running.

The CPU board is a radiation-hardened RAD6000 processor made by BAE Systems. It contains 128 MB of DRAM for data memory storage and cache memory storage, and 3 MB of EEPROM for code memory storage. The CPU board controls the operation of all of the other boards in the SEM. The SEM also houses DC/DC power converters and an oven-controlled crystal oscillator (OCXO). The essential bus +28V power provided by the power subsystem is used to generate secondary +5V, and ±15V services which power the SEM boards. The OCXO provides a stable clock signal at a frequency of \(2^{22}\) Hz, which is divided by the CIB to produce clock signals at 1 Hz and \(2^{20}\) Hz (approximately 1 MHz). These signals are distributed to the CIB, the PACI, and the IDPU, where they are used to time-stamp data acquisition and frame transmission times.

4.4. Flight Software

The Flight Software is hosted on the CPU board. All software tasks execute under a VxWorks® Real Time Operating System, which handles software initialization and scheduling on a priority basis. Most tasks are scheduled to execute in one of three hardware generated cycle rates, the fastest of which is 8 Hz. ACS tasks are generally synchronous, while some C\&DH tasks are triggered asynchronously by events. C\&DH tasking performs all non-ACS spacecraft and payload functions including clock and schedule management, commanding validation and execution, telemetry collection/formatting, ground communication, power control, payload interfacing as required, and fault management.

4.5. Electrical Power Subsystem (EPS)

The Electrical Power Subsystem (EPS) utilizes four triple-junction gallium arsenide (GaAs) solar array wings, each producing 133.5 W for a total of 534 W at 3 years end-of-life. Energy for eclipse operations is stored in a 15 Amp\'re-hour battery comprised of eleven common pressure vessels, each containing two nickel-hydrogen cells. The battery can operate at 50% depth-of-discharge for the full three year design life, and provide up to 280 W during the nominal 35-min eclipse duration. The Charge Control Board(CCB) uses a direct energy transfer system and
is better than 95% efficient. The amount of current produced by the solar array is controlled by pulse-width modulating FET switches between the eight solar cell circuits and the power bus. Unused solar array power is dissipated in the solar array, not in the spacecraft. The CCB uses a temperature-compensated battery voltage algorithm to set the battery charge current. The PCB distributes power to the spacecraft components and provides switched power to those components requiring unregulated power at 28+7/-4 V. It also provides current sensors for telemetry monitoring and over-current protection for the power bus and under-voltage load shedding. The Auxiliary Driver Board (ADB) provides drive signals for the Inertia Adjustment Devices and the electromagnetic torque rods, and controls the solar array wing deployments.

4.6. Telecommunications

The Telecommunications subsystem provides S-band Radio Frequency (RF) links for telemetry and command. It includes an S-band transponder made by Cincinnati Electronics, an RF combiner, an RF switch, and four patch antennas located at the forward (Figure 10) and aft sections of the spacecraft which are combined and provide nearly 4π steradian uplink coverage. The system is capable of full duplex operation. Baseband data format is NRZM to eliminate phase ambiguities that can occur in the uplink and downlink receivers. Two kbps command data is BPSK modulated onto a 16 kHz sub-carrier on the main 2040 MHz carrier frequency. The downlink data rate is nominally 4.0 Mbps, and the frequency is 2215 MHz.

The receiver is ‘hardwired’ to the essential power bus and can never be switched off. The RF path to the receiver contains no switches in order to eliminate risk associated with failures. The transmitter is placed into standby mode or powered off between downlink activities through time tagged commands. The downlink signal is switched to either the forward or aft antenna to avoid interference. The ground provides time-tagged commands to select the best antenna based on the known sun-pointed vehicle attitude and the look-angle to the ground station. Link acquisition begins by transmission of a beacon with data transitions. Following downlink signal acquisition, the ground station transmits the uplink signal. The spacecraft is then commanded to transmit scientific data as well as normal state of health telemetry.

4.7. Thermal Control

The thermal control system for the spacecraft bus is a simple, cold-biased design using flight proven technologies. The thermal radiator surfaces are covered with 10 mil silver-coated teflon, and Multi-Layer Insulation blankets have a 2 mil, Indium Tin Oxide coated/reinforced second surface/kapton outboard layer, 0.25 mil aluminized Mylar inner layers with Dacron mesh separators. Active thermal components include kapton etched foil strip heaters controlled by bimetallic thermostats.
The thermal performance in orbit matches the analytical predictions very well, with all components well within their design temperature ranges.

5. Mission Operations and Ground Data Systems

A schematic of the RHESSI Ground Data System (GDS) is shown in Figure 11. RHESSI is operated from the highly integrated and automated Mission Operations Center (MOC) located at Space Sciences Laboratory of the University of California at Berkeley. The MOC also supports the Fast Auroral Snapshot Explorer (FAST). Co-located with the multi-mission MOC are the RHESSI and FAST Science Operations Center (SOC) and the Berkeley Ground Station (BGS), the primary ground station to support RHESSI on-orbit.

5.1. Mission Operations Systems

RHESSI is operated in store-and-dump mode. The spacecraft transmitter is turned on and off by time sequence commands stored on-board. These commands and many others related to configuring instruments for various phases of the orbit are part of an Absolute Time Sequence (ATS) load generated with the Mission Planning System (MPS). Command loads are uploaded to the spacecraft every two days and cover 4–5 days in advance.

The spacecraft command and control system for RHESSI is the Integrated Test and Operations System (ITOS). Since ITOS was also used during mission integration and testing, members of the Berkeley Flight Operations Team were trained early on operating the spacecraft. This approach allowed for a smooth transition from spacecraft integration and testing to normal on-orbit operations.

Flight dynamics and mission planning products are generated by the Berkeley Flight Dynamics System, which is based on the SatTrack Suite V4.4. SatTrack also
has heritage with various NASA missions and is used to generate all flight dynamics products such as ground station view periods, link access periods, terminator, high-latitude region, and South Atlantic Anomaly (SAA) crossings, and other orbit events needed as input to MPS. Other tools in the SatTrack Suite are employed to distribute real-time event messages to various ground data system elements such as ITOS and the BGS in an autonomous client/server network environment. SatTrack also provides a multitude of related automation functions as well as 2-D and 3-D real-time orbit displays.

All RHESSI space and ground systems are tied into the Spacecraft Emergency Response System (SERS), which is a data base system that regularly parses through log files and automatically checks for yellow or red limit violations. It also acts on warning and error messages received from various GDS subsystems via electronic mail. In case an anomaly is detected, the on-call operations team member is alerted via 2-way email pager in order to assess and resolve the situation. SERS completes the autonomous ground system and adds a high degree of reliability.

5.2. BERKELEY GROUND STATION (BGS)

The Berkeley Ground Station (BGS) is located adjacent to Space Sciences Laboratory. The antenna consists of a pedestal with an 11-m parabolic reflector. A three-axis drive system eliminates the keyhole at the zenith. The antenna is equipped with a full-duplex S-band telemetry and command system. The receiving system has a figure of merit (G/T) of 24.2 dB/K in each of the two receive channels (Left Hand and Right Hand Circular Polarization) for elevations above 5°. The system uses dual receivers with diversity combination. A conical scan feed system provides autotrack capabilities with a typical accuracy of 0.1°. The transmit polarization is selectable, and the nominal RF output power is 100 W (EIRP 63.0 dBW).

5.3. NORMAL OPERATIONS

During Normal Operations, communication with the spacecraft is established six times per day via the Berkeley Ground Station to monitor the spacecraft health and safety, and to retrieve science and engineering data. Scheduling and execution of these pass supports is performed fully autonomously. Routine orbit determination functions are carried out by USSPACECOM (formerly NORAD). Updated two-line element sets are automatically downloaded and archived twice a day in order to generate all tracking schedules and mission planning products.

The SatTrack Gateway Server at the Berkeley MOC invokes scripts that regenerate all mission planning products and contact schedules. The updated multi-mission pass support schedule is then loaded into the Gateway Server. Connected clients such as the BGS and various ITOS systems receive support request messages 10 minutes before a pass support. All systems then automatically configure themselves and open network connections for telemetry and command data flows. Once
the spacecraft rises above the horizon, the real-time pass support commences by establishing two-way communications with the spacecraft in order to perform health and safety checks and to download stored science and engineering data.

Upon completion of a pass support, the downloaded engineering data are examined for any system anomalies. Yellow or red limit violations trigger immediate notification of operations personnel via the Spacecraft Emergency Response System (SERS). Science data are automatically transferred from the ground station to the level-zero processing (LZP) system. Once LZP is completed, the data are transferred to their on-line archive at Berkeley. In addition, the automated CD-ROM production system will eventually produce multiple copies of the data.

5.4. Back-up telemetry and command support

Three additional ground stations are used regularly to provide additional telemetry and/or command support. These ground stations are the Wallops Island ground station in Virginia, operated by NASA, the Weilheim ground station in Germany, operated by DLR, and the Santiago ground station in Chile, operated by the University of Santiago. A dedicated T-1 line from the Berkeley Mission Operations Center to Goddard Space Flight Center, which is shared with the FAST project, is used to establish secure real-time communications with the RHESSI spacecraft through the Wallops ground station. Telemetry data received and stored at the ground stations are transferred to Berkeley post-pass via the open Internet. The averaged link access for the Berkeley and Wallops 11-m ground stations is 55 min day$^{-1}$. Santiago can provide an additional 51 min day$^{-1}$, and Weilheim 16 min day$^{-1}$.

The RHESSI ground system was designed to recover all the data (except for periods of major flare activity) with 6 Berkeley passes daily, but the solar fluxes in the previously unexplored 3–20 keV range, the terrestrial precipitation at $L = 2–2.5$, and the background were all higher than anticipated. Thus, typically 4 additional passes, taken at any of the other three stations, are required to recover all the data.

6. Science Operations and Data Analysis

6.1. Science operations

RHESSI operations have been designed from the start to be largely autonomous with minimum input in terms of different operating mode or observing plans. All systems are designed to operate automatically with no manual intervention. The main operations task is the management of the on-board solid-state recorder (SSR) during periods of high solar activity or when sufficient ground station dumps are not available to keep the SSR from filling up. When strong flare activity appears likely, we try to keep the SSR below $\sim 20\%$ full at the end of the Berkeley passes, so that there is plenty of capacity remaining for a big X-class flare. An attenuator
can be inserted by command to reduce the incoming soft X-ray flux, or some of the data in the SSR can be skipped and not telemetered down.

A team scientist, modeled on the Yohkoh ‘Tohban’ role, monitors solar activity and the instrument operation daily to ensure that the observations are being taken to maximize the scientific return. The Tohban also coordinates with other observatories and notes any special campaign-style observations that may be ongoing to ensure the optimum interchange of information.

The data are generally available for analysis from one to three days after the observation is made. Once the instrument data are recorded in the SSR, it takes up to two days to be telemetered to a ground station depending on how full the SSR becomes. Once on the ground at Berkeley, the packetized data files are converted to Flexible Image Transport System (FITS) format and stored on a Redundant Array of Independent Disks (RAID) system. They are then transmitted over the Internet to Goddard, where they are stored on a similar RAID system. The data are also stored at the HESSI Experimental Data Center (HEDC) at ETH Zurich. At this point, all the data are freely available for downloading by outside users without restriction.

6.2. Data Analysis

REHSSI differs from many imagers in that, instead of transmitting a preselected subset of images, the telemetry includes all of the information about each detected photon. Thus, the data analyst can make tradeoffs among time resolution, spectral range and resolution, spatial resolution, image quality, etc., on the ground. These decisions can be made on a case-by-case basis to match the unique characteristics of the event under study and the relevant scientific objective. A key driver of the REHSSI data analysis approach is the preservation of this flexibility to extract the maximum scientific return from the observations. This means that all detailed scientific analysis will use the same primary database with the most current calibration information.

Furthermore, (1) the complete data output of the HESSI mission is made available promptly to the scientific community, without restriction; and (2) a fully documented analysis package, supported by a range of platforms, is available to the scientific community, with the same toolbox of software used by the PI team. A promptly-generated catalog of summary data products is distributed with the REHSSI data base, to serve as a multi-parameter index and overview of the data base, and to provide data products to users not requiring custom analyses.

The data analysis software is described in the accompanying paper by Schwartz et al. (2002). It is also freely available and can be conveniently downloaded as part of the Solar Software (SSW) tree. The extensive REHSSI software package, mostly written in the Interactive Data Language (IDL) programming language, contains all procedures necessary to read the FITS data files, prepare and plot light curves, images, and spectra, and output the results for further customized analysis.
Furthermore, the joint analysis of many different observations of the same events by other observatories is greatly facilitated, since most other solar space missions and many ground-based observatories also have their analysis software in this same SSW tree. A convenient interface is provided to allow easy comparison of RHESSI images and light curves with similar products from SOHO, TRACE, GOES, Big Bear Observatory, etc. The analysis procedures can all be invoked from the IDL command line, or a more user-friendly graphical user interface is also available for basic analysis tasks. All the software is fully compatible with both the Unix and Windows operating systems. The SSW system allows for rapid bug fixes and software upgrades that can be downloaded to each user’s own computer at any time from a central server, several of which exist in different countries around the world. For users without IDL, the HEDC provides internet browser software to access and analyze the data.

In an effort to familiarize as many interested scientists as possible with analyzing RHESSI observations, three data analysis workshops have been held. These provided training to about thirty scientists at each workshop in accessing RHESSI data and in the use of the image reconstruction and spectral analysis software. On-line documentation is available for all the software from beginner guides to the detailed manuals required by program developers. This documentation can be accessed through the following web site:

7. Summary

On 12 February 2002, one week after launch, the germanium detectors were turned on after being cooled down to their operating temperature range by the cryocooler, and RHESSI detected its first flare, a C2 GOES event at 02:14 UT. Since then, RHESSI has been operating continuously, and through the end of August 2002, it had detected over 1900 flares above 12 keV and over 600 above 25 keV. It has provided the first imaging spectroscopy of solar flares. It has detected the first 3–10 keV hard X-ray microflares, and found that the Sun is continually emitting hard X-rays above ~3 keV. On 23 July it obtained the first high-resolution spectrum of solar gamma-ray lines and the first images of a gamma-ray line, from a GOES X4.8 flare.

As indicated by the early results papers in this issue, RHESSI is already providing many exciting new results, particularly gratifying given the many travails the project suffered pre-launch. However, the power of RHESSI lies in its capability for detailed quantitative probing of the particle acceleration and energy release mechanism. That will require careful, comprehensive analysis of the RHESSI data, together with the context measurements from other spacecraft and from the ground.
Acknowledgements

This work was supported by NASA contract NAS5-98033. The work in Switzerland was supported by a grant from the Swiss National Science Foundation. We wish to acknowledge the efforts of the technical and support staff at the SSL, GSFC, and PSI; of Dennis Lee, Bill Davis, Jim Barrowman, and Tony Comberiate in the Explorer office at GSFC; and of Bill Wagner, Marcus Watkins, Charles Holmes, George Withbroe, George Albright, Lika Guhathakurta, and colleagues in the Sun-Earth Connections Division at NASA Headquarters. The efforts of the various RHESSI review panels are also appreciated, in particular, thanks to the chairs - Tim Gehringer, Joe Winsever, and Don Miller - and to Gerry Share, who provided science input.

References