Multiple choice questions are worth 10 points each. No partial credit will be given for a wrong answer to one of these, but you must briefly explain your answers.

1. For an \(n \times n \) Hermitian matrix, non-degenerate eigenvectors
 (a) are always orthogonal to each other.
 (b) are always real.
 (c) are always normalized so that their absolute values are 1.
 (d) can equal 0 if the rank of the matrix is less than \(n \).

2. \(M \) is an \(n \times n \) matrix and \(r \) is a vector of length \(n \). The equation \(Mr = 0 \)
 (a) has an infinite number of solutions if \(\text{rank}(M) < n \).
 (b) has only one solution if \(\text{rank}(M) = n \).
 (c) has an infinite number of solutions if \(\det(M) = 0 \).
 (d) All of the above
 (e) None of the above

Boas Chapter 3, 7.9, 7.17, 7.23, 11.42 (You don’t have to do the last part of multiplying out \(U^{-1}HU \)).