next up previous
Next: Energy of orbits Up: example Previous: example

solution

We use conservation of energy. The initally

\begin{displaymath}
E ~=~ K + U ~=~ {1 \over 2}mv^2 - {GM_em\over R}
\end{displaymath} (1.27)

At its maximum height of $2R$ from the center of the earth, the kinetic energy is zero so that all the energy is potential. So
\begin{displaymath}
E ~=~ U ~=~ - {GM_em\over 2R}
\end{displaymath} (1.28)

Equating initial and final energies, we have,

\begin{displaymath}
{1 \over 2}mv^2 ~=~ {GM_e m\over 2R}
\end{displaymath} (1.29)

So

\begin{displaymath}
v^2 ~=~ {GM_em\over R}
\end{displaymath} (1.30)

In terms of the escape velocity we have from eqn. 1.23 that

\begin{displaymath}
v^2 ~=~ v_{esc}^2/2
\end{displaymath} (1.31)

or the velocity is $1/\sqrt{2}$ times the escape velocity.



Joshua Deutsch 2003-03-05