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a b s t r a c t 

The evolution of the genome has led to very sophisticated and complex regulation. Because of the abun- 

dance of non-coding RNA (ncRNA) in the cell, different species will promiscuously associate with each 

other, suggesting collective dynamics similar to artificial neural networks. A simple mechanism is pro- 

posed allowing ncRNA to perform computations equivalent to neural network algorithms such as Boltz- 

mann machines and the Hopfield model. The quantities analogous to the neural couplings are the equi- 

librium constants between different RNA species. The relatively rapid equilibration of RNA binding and 

unbinding is regulated by a slower process that degrades and creates new RNA. The model requires that 

the creation rate for each species be an increasing function of the ratio of total to unbound RNA. Simi- 

lar mechanisms have already been found to exist experimentally for ncRNA regulation. With the overall 

concentration of RNA regulated, equilibrium constants can be chosen to store many different patterns, or 

many different input–output relations. The network is also quite insensitive to random mutations in equi- 

librium constants. Therefore one expects that this kind of mechanism will have a much higher mutation 

rate than ones typically regarded as being under evolutionary constraint. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

t  

t  

p  

l  

w  

e  

a  

s  

o  

y  

f  

s  

m

(  

a  

m  

h  

2  

i  

s  
1. Introduction 

The overwhelming majority of transcripts in the human genome

produce non-coding RNA (ncRNA) and these have been under

intensive investigation in recent years ( Consortium et al., 2007;

2012; Djebali et al., 2012; Kapranov et al., 2007; Lee, 2012; Mercer

et al., 2009 ) which has revealed many functions. However, research

to date has still only scratched the surface of the mechanisms in-

volving these transcripts. 

Aside from specific mechanisms, it is useful to take a step back

and ask at an algorithmic level, what all of this extra RNA might

be capable of doing, given the constraint that the mechanisms be

biologically plausible. The author proposed ( Deutsch, 2014 ) that a

general way of understanding many of ncRNA’s functions was to

have these molecules act collectively . By collective behavior, what

is meant is that the actions of any one piece of the genomic cir-

cuitry is influenced by a large number of different molecules. This

contrasts with the usual way of understanding biological regula-

tion, where specific molecules will interfere, suppress, or promote,

gene expression. This is most often how elements in cis -regulation

are described. With collective mechanisms, such specific pathways

cannot explain function. The system needs to be considered in its

entirety for the correct genomic behavior to emerge. 
∗ Corresponding author. 
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The “connectionist” model of human cognition and ma-

hine learning, has been considered in rather early work in

he context of many biological processes including gene regula-

ion ( Mjolsness et al., 1991 ). One can model regulatory elements

hysically, where binding and unbinding are controlled by equi-

ibrium constants. The binding of regulatory proteins in such net-

orks is generally thought to be quite specific, and these mod-

ls are more akin to circuit diagrams with a few connections in

nd out of every element. The program pursued here is to under-

tand if it is biologically tenable to instead have a large number

f molecules present that have much less specific interactions, and

et can function in a precise way, regulating many of the myriad

unctions that take place in the cell. Of course, this is not meant to

uggest that all functions operate this way, but that this collective

echanism could also be operating. 

Recent work on “genome-wide association studies”

GWAS) ( Visscher et al., 2012; Welter et al., 2013 ), have shown that

 large number of traits are determined by the combined effect of

any single nucleotide polymorphisms (SNPs). For example, the

eritability of height involves more than 3 × 10 5 SNPs ( Yang et al.,

010 ). Typically in these cases, each SNP has a minute effect and

t is the collective action of all of them that is largely respon-

ible for the observed correlation of the trait with the genome.

herefore, at the least, the idea of such collective regulation is not

nconsistent with what is known about genetics. 

https://doi.org/10.1016/j.jtbi.2018.09.016
http://www.ScienceDirect.com
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This paper describes a surprisingly simple mechanism for

chieving this kind of collective regulation, where perhaps thou-

ands of RNA species bind to each other promiscuously, yet this re-

ults in, or indeed is responsible for, a high level of computational

omplexity. This is motivated by the developments in artificial in-

elligence that have come about from consideration of similar col-

ective models ( Hertz et al., 1991 ). One of the most general kinds

f models in this class is the “Boltzmann machine” ( Rumelhart and

cClelland, 1986 ), which in a certain limit, described below, be-

omes the so-called “Hopfield model” ( Amit et al., 1985; 1987;

opfield, 1982; Little and Shaw, 1975; 1978; Little, 1974 ). 

Earlier work by the author ( Deutsch, 2016 ) described a way

f mapping the Hopfield model onto promiscuously binding RNA

olecules. However it was not clear how such a mapping could

e made compatible with the biological and physical requirements.

he work here broadens the class of physical systems, and also

hows how the mechanism can be greatly simplified to make it

uch more credible that it would have been able to evolve. Other

ecent work ( Poole et al., 2017 ) proposes more direct methods for

onstructing chemical analogies of Boltzmann machines, but so far

t is not clear how this is related to biology. 

To make the proposal here biologically plausible, its mecha-

isms should involve functions similar to those already known

o exist. There are two mechanisms necessary in what follows in

rder for it to work. The first is that different chemical species

ind and unbind in accord with statistical mechanics. The second

s the existence of molecular mechanisms to selectively transcribe

pecies of RNA depending on the fraction of it that is bound to

ther species. There are many ways of achieving the right mathe-

atical form and there are many forms for this dependence that

ill work. This sort of behavior is fairly typical in many bio-

hemical subsystems. A speculative proposal for accomplishing this

ould be that this process takes place with little genomic involve-

ent. There is machinery capable of replicating RNA, similar to

NA-dependent RNA polymerase (RdRP), which is essential for the

iability of many viruses ( Spiegelman et al., 1965 ), but also appears

o exist in humans ( Kapranov et al., 2010 ). Furthermore the tran-

cription rate of RdRP should depend on the relative amount of

ound to unbound polymer for every molecular species. A more

onventional approach uses the effect that ncRNA has on genomic

ranscription factors. This general kind of mechanism has been ob-

erved ( Takemata and Ohta, 2017 ) in different situations. These

ossibilities are discussed in Section 6.2 . 

One of the main points of this work is to illustrate that there

ay be very different principles lurking in biological systems of

hich we are currently unaware. These would not be apparent to

s from the sophisticated arsenal of experimental techniques we

ow use to understand genetic regulation. These tools are primar-

ly designed to tease out specific interactions relating a few com-

onents from the large number that are present in the genome.

n the other hand, hypothetically, to observe collective regulation,

ne needs to be able to examine thousands of components simul-

aneously, each one having a minuscule effect, but collectively, they

roduce precisely controlled regulation. An analogy with artificial

eural circuitry might make this point clearer. In pattern recogni-

ion systems, where one desires to classify different images, most

f the neurons fire in response to essentially all images that are

resented. A single neuron is involved in the recognition of hun-

reds of thousands of images. Yet by precisely controlled collective

nteractions between units, very specific and accurate classification

s achieved. Even in the case where all neurons can be probed si-

ultaneously, it can be very difficult to understand how the cir-

uitry operates, because the collective interaction of many compo-

ents is not conducive to the kinds of explanations used in more

ormal digital circuitry. The same is expected for biological neural

ircuits as well. GWAS gives some insight but even with the mas-
ive amount of data being collected, the genomic circuitry is still

reatly undetermined. 

. Relation to Boltzmann machines 

The purpose of a Boltzmann machine ( Hinton and Sejnowski,

983a; 1983b; Rumelhart and McClelland, 1986 ) is to learn a set of

nput/output pairs, and generalize from that information. If a set

f inputs is presented, a corresponding set of outputs should be

etrieved. This is accomplished as follows. 

Consider a set of variables, often referred to as “spins”, s i that

an take on only the values ± 1, but can change their values over

ime, as the system is updated, for example using the Metropolis

onte Carlo algorithm at some finite temperature. 

They interact via a connectivity matrix J ij that couples spins i

nd j . The couplings are chosen by a method outlined below, to

ptimally give the correct outputs. To do this updating, one writes

own an energy function, or Hamiltonian, for this system 

 = −
N ∑ 

i =1 , j=1 

J i j s i s j (1) 

ut of these N spins, there are N f spins that can sometimes be

xed. This is sometimes referred to as the “clamping” phase. These

 f spins are often referred to as “visible” units. When they are

xed, they have constant values during the updating procedure.

hese represent the training set of data for the machine. One can

hink of their effect as externally imposing constraints on the dy-

amics of the other N v ≡ N − N f variable spins. Thus the first N v 

pins s 1 , . . . , s N v can vary and the last N f spins s N v +1 , . . . , s N are,

ometimes, frozen. Of the last N f spins, one can regard N i as inputs

nd N o = N f − N i , as outputs. These are the input/output pairs

entioned above. This is depicted in Fig. 1 , where the black cir-

les represent the input units (that is spins), and the outputs are

he black unfilled circles. The dashed unfilled circles represent the

idden units. The interactions J ij are depicted by straight lines con-

ecting the spins. 

The algorithm starts by fixing these N f spins to one of the in-

ut/output pairs while the system goes through many updating cy-

les. Then the system is allowed to run with the N f visible spins

ow being unclamped so that they are no longer fixed and are up-

ated in the same way as the rest of the spins. Comparing the

tatistics of the unclamped and clamped simulation allows one to

volve the weights J ij , moving the system closer towards the opti-

al set of couplings. As this happens, the temperature of the sys-

em is also slowly decreased. This is an application of simulated

nnealing ( Kirkpatrick et al., 1983 ). 

The next step in this process is to change the fixed spins to

nother input/output pair and the above unclamping and anneal-

ng process repeats. Eventually, the connectivity matrix will have

volved to one that results in a system that has optimally learned

hese input/output pairs. That is, if one of the input sets is pre-

ented, it responds by giving the corresponding output. 

The Hopfield model ( Amit et al., 1985; 1987; Hopfield, 1982;

ittle and Shaw, 1975; 1978; Little, 1974 ) considers the case of no

idden units. In that case, there are M input/output pairs to be

earned. There is no logical distinction here between inputs and

utputs, and any subset of the spins could be presented, with the

xpectation that the rest would correctly flip to the desired out-

uts. Let us suppose that we want to learn M separate spin config-

rations. Let us denote the αth spin configuration by { t α
1 

, . . . , t α
N 
} ,

for α = 1 , . . . , M. Then a Hebbian rule can be used to explicitly 

rite down the couplings without going through any simulated

nnealing procedure, 

 i j = N 

∑ 

α

t αi t αj (2) 
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with a normalization factor N , that varies depending on the

author, and will be chosen later on in what follows. The num-

ber of patterns that can be reliably stored is proportional to

N ( Amit et al., 1985 ) but this will also depend on the correlations

between the patterns. The mean field solution of these equations

at inverse temperature β is 

s i = tanh ( 
β

N 

∑ 

j 

J i j s j ) i = 1 , . . . , N. (3)

With the Hebbian couplings of Eq. (2) , and statistically inde-

pendent t α
i 

’s (with mean zero), the choice s i = t α
i 

can be

shown ( Hertz et al., 1991 ) to satisfy these equations. 

One can also use the same couplings in a Boltzmann machine

with hidden units. This will not be optimized over the choice of

spin values for the hidden spins, but for this choice of coupling, it

will lead to a recall of all the visible units. 

3. The system 

RNA is used in an enormous number of ways in biology. The

majority of transcripts in human cells do not directly code for pro-

teins, but are non-coding ( Consortium et al., 2012 ) with functions

that are mostly not well understood. Here I make the conjecture

that that much of this RNA is involved in the kind of collective

regulation described above. 

The system studied here is a collection of N RNA species that

interact through base pair binding and unbinding and other possi-

ble weak associations. Each molecule can bind to itself and other

molecules. RNA–RNA interactions in physiological conditions allow

for the formation of secondary structure, and therefore must also

allow for the binding to different molecules, as such interactions

are of identical strength and mathematical form. The amount of

non-coding RNA (ncRNA) in a cell is quite substantial ( Cabili et al.,

2011 ). One therefore expects that these RNA molecules have a con-

siderable degree of interaction with each other, and furthermore,

that they will bind frequently to other molecules such as some

proteins. This is discussed further in Section 6.1 . 

The inputs to the cell, such as signaling molecules, are well

known to affect the transcription of DNA to RNA, and in particu-

lar, messenger RNA (mRNA). Because of the substantial interaction

between RNA molecules, this in turn will affect the concentrations

of all of the RNA. Some of these other RNA molecules will be in-

volved with protein translation. By promoting or suppressing pro-

tein translation, these RNA concentrations will affect the function

of the cell. Thus the cell inputs are “processed” by a complex sys-

tem of DNA, proteins, and RNA, to produce or modify cell outputs.

This paper investigates the possibility that it is the substantial and

complex interactions between the RNA molecules that underlie the

sophisticated computations used by the cell in determining how it

will respond to different inputs. 

The basic linking between inputs and outputs, is similar to the

standard regulatory mechanisms involving binding of regulatory

proteins along different sites on the genome ( Buchler et al., 2003 ).

In contrast with the RNA proposal above, such bindings require

much more specificity, in much the same way as a conventional

digital circuit requires precise connections between its elements. A

system of promiscuously binding RNA molecules in all likelihood,

is incapable of such specificity, and instead must resort to collec-

tive behavior, in analogy with artificial neural networks. 

There are two basic components that are needed here to

achieve such a collective computation. The first is that there

is a chemical equilibrium between N molecular species under-

going reversible reactions. Such an equilibrium is well under-

stood ( Reif, 2009 ). One assumes, with some justification given in

Section 6 , that because of the relatively high concentration of
olecules, the system can quickly reach equilibrium concentra-

ions. The steady state concentrations of different species is what

ill be of interest here. 

On the other hand, the lifetime of RNA molecules is finite, and

his means that in steady state, they require creation. The way that

his happens is crucial to the second component to this model

nd is discussed in detail below. This is a subtle problem and cer-

ainly requires experimental verification. In order for our set of

NA molecules to perform sophisticated computations, I looked for

 simple rule that would be biochemically plausible, and give be-

avior analogous to Boltzmann machines. As we will see, this can

e achieved if the creation rate of a species depends on the ratio of

ound to unbound RNA. Different biological scenarios for accom-

lishing this will be discussed later in Section 6.2 . 

In the following sections, it will be shown that these two rather

imple assumptions involving RNA equilibration and creation, can

erform collective computations. We first will consider an inter-

ediate model where the mathematical relationship with learning

lgorithms is the most apparent. I will then show how this can be

implified further to come up with a more biologically plausible

echanism. 

.1. Chemical equilibration 

We consider N different chemical species of RNA that bind and

nbind at rates that depend on their primary sequences. For ex-

mple, complementary sequences will be most strongly bound. For

he moment, assume that there are fixed total concentrations of

ach species C 1 , C 2 , . . . , C N . The corresponding unbound concentra-

ions are denoted as ρ1 , ρ2 , . . . , ρN . For simplicity I will assume bi-

ary reactions between molecules i and j , 

 + j � i j, (4)

nd that there are no higher order reactions present. Including

ore complex reactions should not preclude the scenario pre-

ented here from working, and is an interesting topic for further

nvestigation. We will denote the concentration of two molecules i

nd j , that are bound together, by ρ ij . 

The equilibrium constant ( Reif, 2009 ) for such a reaction is

 i j = ρi j /ρi ρ j . This implies ( Deutsch, 2014 ) 

i = 

C i 
1 + 

∑ 

j ρ j K i j 

(5)

or i = 1 , . . . , N. 

In this model, the set of equilibrium constants K ij , is fixed dur-

ng the lifetime of a cell, as would be expected. It is posited that

hese evolve through mutation, to be able to take on arbitrary val-

es, within some physical limits. Because binding between two dif-

erent molecules will take place preferentially along certain species

pecific regions, there are enough degrees of freedom for these

inding affinities to be chosen independently. Even if there is some

ependence, there are many possible choices for couplings that

ead to useful learning. 

Note also that the system can be rescaled by a factor C 0 with

nits of density, by defining rescaled primed variables K i j = K 

′ 
i j 
/C 0 ,

ρi = ρ′ 
i 
C 0 , C i = C ′ 

i 
C 0 and Eq. (5) will remain the same in the

escaled primed variables. This allows us to suitably rescale the

quilibrium constants. 

.2. Creation of new RNA 

As mentioned above, degraded RNA molecules must be replaced

y new ones, and the most subtle part of the mechanism proposed

ere is how molecule production is regulated. In this model, one

as two requirements related to RNA creation. First, that the rate

ill be controlled by the fraction of total to unbound molecules
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f the same species. Second, we require a mechanism to regulate

he total concentration of RNA molecules. This latter requirement

s fairly uncontroversial, and this can be regarded as a homeostatic

eedback mechanism. More specifically, the first requires that the

eneration of a particular RNA species increases as the ratio of total

o unbound RNA increases. I will discuss how these mechanisms

ould operate in more detail in Section 6.2 and will now briefly

ummarize the two main scenarios that could give rise to this kind

f regulation. 

As mentioned in the introduction, RNA-dependent RNA poly-

erase (RdRP), can directly copy RNA molecules without the pres-

nce of DNA. For a given species, we require that the rate of copy-

ng will depend inversely on the amount of free RNA present. 

A more likely explanation for how such a dependence could be

chieved is through DNA cis-regulatory elements, regulating RNA

ranscription. There are already similar kinds of regulation that

ave been observed ( Takemata and Ohta, 2017 ), and this will be

iscussed further in Section 6.2 . However this kind of regulation is

f course not evidence for the existence of the kind of computation

roposed here, but suggests that this kind of mechanism would be

orthwhile to look for experimentally. 

In the first model that is considered below, the transcription

ate will depend on other factors as well, (see Section 3.5 ), but it

s shown later in Section 5 , that one can dispense with these addi-

ional dependencies and produce a model with a transcription rate

s described above, making this much more biologically plausible. 

The point of this model is as a proof-of-concept. In addition,

here are many variants, some of which have already been men-

ioned, such as higher order interactions, that could also perform

ollective computation. The main point of the following analysis is

o make the case that this sort of mechanism is plausible. 

.3. Dynamics of concentration and transcription rates 

Assuming no degradation or creation of RNA, the system will go

o equilibrium concentrations given by Eq. (5) , which determines

he unbound RNA concentrations given the total concentrations of

ll the RNA molecules. However because of degradation and cre-

tion, the actual concentrations will differ from the equilibrium

ase. 

In the framework described here, certain RNA species, for ex-

mple mRNA, will act as inputs and for simplicity, these inputs

ill be assumed to have fixed values, while the remaining species

ill have time variation in their bound and unbound concentra-

ions, due to RNA degradation, creation, and the interactions with

ther molecules. Out of the N species of RNA, one can say the

 v of the concentrations can vary and N f of them are fixed, with

 v + N f = N. 

If a closed system is not initially in equilibrium, the unbound

oncentrations will vary in time, asymptotically approaching the

quilibrium values. The actual dynamics will be very complex and

here will be a spectrum of relaxation times associated with the

NA concentrations’ dynamics. 

Assuming that binding and unbinding takes place on a

imescale much shorter than the lifetime of an RNA molecule, then

his allows us to describe dynamics with only one relaxation time

ρ through a standard first order kinetic equation. 

ρ
dρi 

dt 
= −ρi + 

C i 
1 + 

∑ 

j ρ j K i j 

(6) 

or i = 1 , . . . , N. The relaxation timescale is assumed to be very

hort compared to the other processes described below, and there-

ore their detailed relaxation spectrum on a longer timescale is

nimportant. This will be justified further in Section 6.1 . 

We are now in a position to quantify the mechanism of RNA

reation discussed above. For simplicity, this model assumes a
egradation timescale τ C that is independent of molecular species.

he rate of transcription of the i th species is regulated by a process

hat depends on both the total concentration C i of a species, and

ll of the unbound ρ ’s. 

C 
dC i 
dt 

= −C i + f (C i , { ρk } ) (7)

or i = 1 , . . . , N v . Later I will show how this dependence can be

onsiderably simplified to make it more biologically plausible. One

xpects that the process of degradation and production takes place

t a much slower time scale than the molecular equilibration men-

ioned above, so that τ C � τρ . This is born out by estimates us-

ng empirical data, as discussed in Section 6.1 . The function f gives

he rate at which molecules of type i are being created through

he kind of mechanism described above in Section 3.2 and in

ection 6.2 . 

The remaining C i , i = N v + 1 , . . . , N, will act as inputs as de-

cribed above, and those concentrations will not vary in time. Pro-

esses external to the ones considered here, are maintaining those

evels; for example, the transcription of mRNA molecules that are

cting as fixed inputs. 

.4. Connection to Boltzmann machines 

It is useful to connect the machine learning system discussed

n Section 2 to the genomic system above. The variables of interest

or the Boltzmann Machine are the spin variables s 1 , . . . , s N . One

ould like to relate these to the concentration of unbound RNA

1 , . . . , ρN . In this case, the s i will no longer only take on the val-

es ± 1, but can vary over the real. I chose a linear relation be-

ween the two sets of variables 

i = δ
1 + s i 

2 

+ b (8) 

here δ and b are constants. From the form of solution in

q. (3) the s i still must be bounded by ± 1, and therefore ρ i is

ounded between b and b + δ. These bounds are chosen to be bio-

ogically sensible, meaning that the unbound concentrations, { ρ i },

eed not become arbitrarily small or large for the mechanism pro-

osed here to work. 

Corresponding to the learned patterns t α
i 

in Eq. (2) , will be the

earned unbound concentrations defined as 

p αi = δ
1 + t α

i 

2 

+ b (9) 

n analogy with learning algorithms, M patterns of ρ are being

tored, with the αth pattern having unbound concentrations of

 p α
i 
} i . 
Similarly, one would like to relate the Boltzmann Machine cou-

lings in Section 2 to the equilibrium constants K ij above, through

 i j = ε
1 + J i j 

2 

+ a (10) 

here a and ε are both constants. If one places the restriction

 J ij | ≤ 1 for all i and j , by appropriate normalization of Eq. (2) , this

eans that a < K i j < a + ε. This allows us to choose physically sen-

ible values for the equilibrium constants. 

.5. Creation rate 

To relate the Hopfield model solution Eq. (3) to the kinetic

quations for our RNA system, it is necessary to choose a specific

nd seemingly complicated form for f in Eq. (7) . We are interested

n the system’s steady state behavior, where all time derivatives are

ero, which simplify Eqs. (6) and (7) . This requires that the choice
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for f be 

f (C i , { ρk } ) = 

C i 
ρi 

S 

( 

4 

ε

(
C i 
ρi 

− 1 

)
− 2 

(
1 + 2 

a 

ε

) N ∑ 

j=1 

ρ j 

−2(δ + 2 b) 

ε

∑ 

j 

K i j + 

(
2 a 

ε
+ 1 

)
(δ + 2 b) N 

) 

(11)

for i = 1 , . . . , N. We will see in the section, why this is. 

The function S ( x ) is chosen to be 

S(x ) = 

δ

2 

[1 + tanh (βx/N)] + b (12)

But there is a large class of sigmoidally shaped functions that

would also work. 

Eqs. (6) , (7), (11) , and (12) along with arbitrary initial condi-

tions, fully define the dynamics of the unbound and bound RNA

concentrations, given a set of equilibrium constants K ij . The next

section explains the equivalence with learning algorithms in more

detail. 

4. Equivalence of RNA system to machine learning algorithm 

We are interested in the long time steady state solution, where

there is no time dependence and therefore all time derivatives are

zero. 

Eq. (6) becomes (5) in this limit, and therefore ∑ 

j 

K i j ρ j = 

C i 
ρi 

− 1 . (13)

Similarly, Eq. (7) becomes 

 i = f (C i , { ρk } ) . (14)

Substituting in Eq. (11) 

 i = 

C i 
ρi 

S 

( 

4 

ε

(
C i 
ρi 

− 1 

)
− 2 

(
1 + 2 

a 

ε

) N ∑ 

j=1 

ρ j −
2(δ + 2 b) 

ε

∑ 

j 

K i j 

+ 

(
2 a 

ε
+ 1 

)
(δ + 2 b) N 

)
(15)

Canceling the C i ’s and using Eqs. (13) , (8) and (10) , solving for s i ,

and substituting Eq. (12) finally gives the same form as Eq. (3) , 

s i = tanh 

( 

βδ

N 

∑ 

j 

J i j s j 

) 

(16)

It is not necessary that a tanh function be used here. A variety

of sigmoidally shaped curves should have the correct properties,

with similar efficacy. 

The above analysis does not show that these equation will lead

to this steady state solution, and indeed, if the time scales are not

as described here, it can lead to different steady state behavior.

Next, I will explore this problem numerically to find out if the

equivalence to the above solution is viable, and if it does lead to

machine learning. 

4.1. Numerical results 

The above model was implemented numerically. The system

had N = 50 RNA species with unbound concentrations { ρ i } and

total concentrations { C i } as described above, and these evolve over

time according to the Eqs. (6) , (7), (11) , and (12) . The equilibrium

constants K ij ’s were chosen according to Eq. (2) where we analyzed

the retrieval of M = 3 patterns. The t α
i 

were chosen randomly to

be ± 1 and these correspond to values of ρ given in Eq. (9) . Af-

ter evolution for sufficient time to have converged, the program
hecked to see if the pattern of ρ ’s found was one of the three

atterns that were encoded in the K ij ’s. 

When the transformation of Eq. (10) was applied, the final K ’s

ere scaled so that their values were between a and a + ε. The val-

es of the ρ ’s were also rescaled according to Eq. (8) . It appeared

hat the values of these rescaling parameters, a, b , ε and δ, did not

ave a strong effect on convergence of the model. 

The ratio of the two timescales τ C / τρ needed to be sufficiently

arge to obtain consistent convergence over a wide range of initial

onditions. A ratio of τC /τρ = 100 was found to work in all cases.

ith smaller values, such as τC /τρ = 10 , convergence worked well

or some initial conditions but not for all of them. 

When starting with arbitrary initial ρ i ’s, the corresponding val-

es of C i were chosen by rearranging Eq. (13) 

 i = ρi 

( ∑ 

j 

K i j ρ j + 1 

) 

(17)

The equations were evolved using an explicit embedded Runge-

utta-Fehlberg 4(5) method, with a step size of 0.1. 

Several important properties of the system’s dynamics were

tudied, the basin of attraction starting from ρ ’s that were dif-

erent from the initial patterns. Another question considered, was

ow altering the optimal K ij ’s influenced the final patterns found.

nd finally, how the number of hidden units influence the sys-

em’s performance. The following two subsections study sensitivity

o deviations in the ρ ’s and deviations in the K ’s. The third subsec-

ion considers the effects of clamping some of the concentrations

o fixed values, to study how well such systems perform as Boltz-

ann machines. 

.1.1. Sensitivity to unbound concentrations 

The first numerical study tested out the basin of attraction of

nitial values of the ρ i ’s. Because the ρ ’s continuously vary in time,

o compare the converged solutions to the binary patterns t α
i 

, the

’s were partitioned so that they corresponded to −1 if ρi < b +
/ 2 , at +1 otherwise, which is seen from the mapping between

he two systems in Eq. (9) . 

An initial pattern was altered from t α
i 

so that it differed ran-

omly at n locations. That is, the Hamming distance was set to n .

hen the system was evolved from this condition to see if it would

elax back to that same pattern { t α
i 
} i . Note that because of symme-

ry, both { t α
i 
} i and −{ t α

i 
} i are possible solutions that should be

onsidered when comparing for convergence. Any deviation from

he trained pattern was considered a mistake. 

At every initial Hamming distance n , 10 independent sets of

 patterns were generated. For each of these sets, the program

tarted with 10 randomly altered patterns that were evolved for

ach of the M patterns. Altogether, this represents 300 separate

uns for each Hamming distance studied. 

I also investigated making two separate kinds of alterations to

he initial conditions: ones that conserve the total number of 1’s

nd −1 relative to the learnt pattern { t α
i 
} i , and ones that allow

his total to vary. This becomes an important distinction later on,

hen a more universal version of this model is considered. 

In Fig. 2 , and most subsequent plots, two sets of values were

sed, in (a), a = b = 0 . 4 , and ε = δ = 0 . 6 and in (b) a = b = 0 . 001

and ε = δ = 0 . 999 (see Eqs. (8) and (10) ). As will be seen, for

ost quantities, the results are quite insensitive to these choices. 

The fraction of mistakes as a function of the Hamming distance

utoff is shown in Fig. 2 (a) and (c). The three lines in (a) and in

c), show the results for different values of β , βδ/N = 0 . 5 , 2, and

. With less accurate iteration methods, it was found that βδ/ N < 8

as not stable. However with this Runge Kutta method, the differ-

nces between the results are fairly minor. The precise sigmoidal

hape S ( x ) in Eq. (12) is clearly not important. 
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Fig. 1. Illustration of a Boltzmann machine network. The black circles and unfilled 

thick circles are inputs and outputs of the network, respectively, and are fixed in 

value while the system is trained by an updating procedure. This results in output 

units (in this case there are two), that are trained so that their values depend on 

the values of the input neurons. The remaining dashed unfilled circles are hidden 

units that are used to process the input units. 
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I now consider the second kind of initial conditions mentioned

bove, where the initial condition does not change the total un-

ound concentration. To generate such initial conditions, the pro-

ram starts with the target learned unbound concentrations { ρi } =
 t α
i 
} i and makes alterations to the { ρ i } in random pairs i, j , so

hat the sum of the ρi + ρ j stays constant. The results are shown

n Figs. 2 (b) and (d). 

.1.2. Sensitivity to equilibrium constants 

I now consider the effect that changing the K ij ’s has on the

atterns that are retrieved. With the usual Hopfield model, it is

nown to be quite robust to changes of the connectivity strength,

hich greatly contrasts with usual digital architecture. We will

ow see to what extent this still carries over here. 

The algorithm picks i ’s and j ’s at random and mutates them,

n a way which is equivalent to J i j → −J i j . Taking into the account

hat the parameters we chose have a + ε = 1 , this is equivalent to

aking K i j → 1 − K i j . The average Hamming distance H({ t α
i 
} i , { ρi } i )

is computed by translating the ρ ’s into corresponding discrete

pin variables. This way, we are counting the number of differ-

nces between the t α
i 

’s and the final pattern, s final, i that emerge.

he Hamming distance is normalized by dividing by N , that is

 = H({ t α
i 
} , { s f inal,i } ) /N. This is computed as a function of the num-

er of mutations n K made to the K ij ’s. To normalize this, we define

f K ≡ 2 n K 

N(N − 1) 
. (18) 

he program performs these kinds of mutations with all other

arameters identical to the ones used above, and the results are

hown in Fig. 3 . 

.1.3. Clamping input concentrations 

Now consider clamping N f of the C i ’s so that they are fixed to

redetermined values as the biochemical network evolves in time,

o see if it can correctly associate those clamped inputs to outputs.

his is the kind of task that is performed by a Boltzmann machine.

ig. 1 illustrates this process. The filled black circles represent the

lamped inputs, and are coupled through the K ij ’s, represented by

ines, to all other units. A single unit, i , represents the concentra-

ions ρ i and C i . The unfilled circles have ρ i ’s and C i ’s that vary, and

wo of these circles represent outputs. To test out this capability,

he program was initialized as before, with N = 50 and choosing

 = 3 separate random patterns S i = t α
i 

which are then trans-

ated into ρ i ’s, again using Eq. (9) . The couplings K ij are chosen as

efore as well. 

N f of the C i ’s, for i = N v + 1 , . . . , N, were fixed, and the other N v 

nits were unclamped as before, as described by Eq. (7) . The ini-

ial conditions were varied, by randomly scrambling the remaining

alues of ρ i , i = 1 , . . . , N v . As usual, the corresponding initial C i ’s

ere chosen through Eq. (17) . 

Out of the N v = N − N f ρ i ’s that vary, one can regard two of

hese as output units and the rest as hidden. We would like to

now how well, given the fixed inputs, the system evolves to fi-

ally recall these two output units. 

Fig. 4 shows the fractional number of mistakes plotted versus

he number of variable units, N v , for two different temperatures,

δ/N = 0 . 5 and 4.0. 

. More universal regulation 

The numerical results of the previous section illustrate that for

 wide range of parameters, this genetic biochemical network has

apabilities quite similar to those of powerful machine learning al-

orithms. The main criticism of this system is the rather contrived

ature of the function f in Eq. (11) . This complicated form was de-

igned to give the same steady state solutions as the analogous
achine learning system. But it is not clear how this could be im-

lemented biologically. I now show how this mechanism can be

reatly simplified, leading to a much stronger case for biological

elevance. 

Let us start by writing Eq. (11) as 

f (C i , { ρk } ) = 

C i 
ρi 

S 

(
4 

ε

(
C i 
ρi 

− 1 

)
− A 

)
(19)

ith 

 = 2 

(
1 + 2 

a 

ε

) N ∑ 

j=1 

ρ j + 

2(δ + 2 b) 

ε

∑ 

j 

K i j + 

(
2 a 

ε
+ 1)(δ + 2 b) N 

)
(20) 

The complication here is that A is not a constant but depends

n unbound densities ρ i . However, it only depends on the sum of

ll of these. Consider initial conditions that still differ from the pat-

erns p α
i 

but have the same total sum. We ask if replacing �ρ i by

 constant value will influence the steady state, that is, Eq. (16) .

herefore it is possible to define a more “universal” creation func-

ion as follows 

f (C i , { ρk } ) = 

C i 
ρi 

S 

( 

4 

ε

(
C i 
ρi 

− 1 

)
− 2 

(
1 + 2 

a 

ε

) N ∑ 

j=1 

p αj 

−2(δ + 2 b) 

ε

∑ 

j 

K i j + 

(
2 a 

ε
+ 1 

)
(δ + 2 b) N 

) 

(21) 

here the sum of the ρ i ’s has been replaced by a sum over pat-

ern α, p α
i 

. One can now follow the same steps as were employed

n Section 4 to relate this biochemical system to the machine

earning spin system. In this case, Eq. (15) now has the term in

he argument of the function S , 2(1 + 2 a ε ) 
∑ N 

j=1 ρ j , replaced by

(1 + 2 a ε ) 
∑ N 

j=1 p 
α
j 
. The argument of S now differs from its previ-

us value by 

h ≡ 2 

(
1 + 2 

a 

ε

) N ∑ 

j=1 

(p αj − ρ j ) = 

(
1 + 2 

a 

ε

)
δ

N ∑ 

j=1 

(t αj − s j ) (22)

here in the last equality, Eqs. (9) and (8) have allowed us to

ranslate this difference into spin variables. To determine the ef-
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Fig. 2. (a) The average fractional number of mistakes made as a function of the Hamming distance, n , between the initial state and the pattern. Here the total number of 

RNA species is N = 50 and the total number of patterns to be recalled is M = 3 . a = b = 0 . 4 , and ε = δ = 0 . 6 (see Eqs. (8) and (10) ). The triangles have βδ/N = 0 . 5 the 

circles, βδ/N = 2 , and the stars show βδ/N = 8 . The lines are simply a guide for the eye. (b) The same case as in (a) except that the total unbound concentration of the 

initial state is unchanged. (c) and (d) are the same as (a) and (b) respectively, but with a = b = 0 . 001 , and ε = δ = 0 . 999 . 

Fig. 3. (a) The average normalized Hamming distance is plotted versus fractional mutation frequency of equilibrium constants f k . Triangles correspond to βδ/N = 0 . 5 , circles 

βδ/N = 2 . 0 , and stars βδ/N = 4 . 0 . a = b = 0 . 4 , and ε = δ = 0 . 6 (see Eqs. (8) and (10) ). (b) The same except that a = b = 0 . 001 , and ε = δ = 0 . 999 . 

 

 

 

fi  

s  

t  
fect of this term, for simplicity, consider the case where 

∑ 

i 

t αi = 0 f or α = 1 , . . . , M. (23)

Because these patterns are chosen at random, then for large N , this

is a reasonable assumption. 
Let us start by reviewing the simplest way that the mean

eld solutions in Eq. (3) or equivalently Eq. (16) can be under-

tood( Hertz et al., 1991 ). This is done by utilizing the random sta-

istical nature of the t α
i 

’s. Examining the argument on the right
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Fig. 4. The average fractional number of mistakes made as a function of the num- 

ber of variable units, N v , in the Boltzmann machine analog illustrated in Fig. 1 . 

The triangles are for the case βδ/N = 0 . 5 , and the stars are for βδ/N = 4 . 0 . Here 

a = b = 0 . 4 , and ε = δ = 0 . 6 (see Eqs. (8) and (10) ). 
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and side of this equation, and using Eq. (2) , we have that 

N 
 

i =1 

J i j s i = N 

N ∑ 

i =1 

M ∑ 

β=1 

t 
β
i 

t 
β
j 

s i . (24)

reviously we chose | J ij | ≤ 1. Because the patterns are independent,

o achieve this, the normalization factor N , will be of order 1 / 
√ 

M

(with additional logarithmic corrections that are not important to

ur conclusions). If I now change the “gauge”, writing σi ≡ s i t 
α
i 

, 

hen 

N 
 

i =1 

J i j s i = N 

[ 

N ∑ 

i =1 

t αj σi + 

M ∑ 

β 	 = α
t 
β
j 

N ∑ 

i =1 

t 
β
i 

t αi σi 

] 

= N 

[ 

Nt αj σi + 

M ∑ 

β 	 = α
t 
β
j 

N ∑ 

i =1 

t 
β
i 

t αi σi 

] 

(25) 

f we choose the pattern s i = t α
i 

, then σi = 1 for all i . The first

erm in the last equality is (N N) t α
j 

. Because the patterns are ran-

om, the second term has a term of order ±N 

√ 

NM , which for

 � M , is negligible compared to the first term. In this limit, all

f the other patterns β 	 = α can be ignored, and this yields the

ean field equation for a single pattern, the so-called “Mattis

odel” ( Amit et al., 1985 ). As is evident from Eq. (16) , this is sat-

sfied, and using the normalization factor N ∝ 1 / 
√ 

M , the size of

he dominant term is of order N/ 
√ 

M . 

Now let us return to the corrections to Eq. (16) given by

q. (22) . Doing the same kind of estimation, 	h has magnitude√ 

N . Therefore comparing the factors of N and M with Eq. (25) ,

hich is of order N/ 
√ 

M , 	h is negligible for N � M. N � M is the

ase that we are already considering. 

Therefore for the random patterns (typically used in machine

earning problems such as the Hopfield model) with a constant

um, and for large N , replacing the summation of the ρ ’s by

q. (21) is not expected to alter the steady state solutions of

q. (16) . 

I will therefore only consider learnt patterns with the property

hat 
∑ 

i p 
α
i 

is a constant and does not depend on α. In the most

mportant case 1 considered above, this corresponds to a machine
1 Analysis of the Hopfield model for nonzero 
∑ 

t α
i 

can also be per- 

ormed ( Amit et al., 1987 ). 

b  

t  

o  

s

earning problem satisfying Eq. (23) . We therefore can write 

 tot ≡
∑ 

i 

p αi = N 

(
δ

2 

+ b 

)
(26) 

here the last equality used Eq. (8) . 

This shows that the creation mechanism can be modified so

hat it only depends on the ratio 
C i 
ρi 

f (C i , { ρk } ) = 

C i 
ρi 

S 

(
4 

ε

(
C i 
ρi 

− 1 

)
− A 

)
(27)

here A maintains a constant value in time and only depends on

he fixed parameters, such as the equilibrium constants K ij and the

otal sum of learned pattern concentration P tot , 

 = 2(1 + 2 

a 

ε
) P tot + 

2(δ + 2 b) 

ε

∑ 

j 

K i j + ( 
2 a 

ε
+ 1)(δ + 2 b) N) (28)

ote that for the K ij obtained using Eqs. (2) , (10) and (23) , A does

ot depend on i . A more general treatment would include a depen-

ence on i . 

This approach assumes that �i ρ i starts close to P tot . If it does

ot, then an additional regulatory mechanism is needed to drive

his sum towards P tot . This would operate in a similar way to other

omeostatic mechanisms. If P tot deviates, the total RNA concentra-

ion should vary as well. Mechanisms would need to ensure that

his stays at a well defined value. But even if we completely ignore

uch a general mechanism, it is straightforward to study this more

niversal model numerically and compare it to the results found

arlier in Section 4.1 . We will see that it still works surprisingly

ell. 

Eqs. (7) , (27) and (6) define the system of equations to be

volved in time. The creation of RNA is now much simpler to de-

cribe. It depends on the ratio of total concentration to unbound

oncentration. 

This model will now be investigated numerically. 

.1. Numerical results 

The above model with this much simpler creation function, was

tudied using the same parameters as in Section 4.1 , e.g. M = 3 , 

nd N = 50 . As mentioned above, this assumes a general homeo-

tatic mechanism, as considered earlier in Fig. 2 (b) where the ini-

ial unbound concentrations preserve their total value, �i ρ i . 

To investigate how well this system works in more detail, I con-

ider systems that are regulated so that the total concentration of

nbound RNA starts off close to P tot , but is otherwise scrambled.

his was done with the same procedure as in Figs. 2 (b) and (d).

he graphs in both Figs. 5 (a) and (b), show the fractional num-

er of mistakes as a function of the Hamming distance, n , between

he initial state and the pattern to be recalled. The recall works

est when the total unbound concentration is maintained at the

orrect final amount, and is less good when it deviates from that.

his shows the necessity for carefully regulating the total RNA con-

entrations. 

Similarly, the variation of the normalized Hamming distance as

 function of the mutation frequency of the K ij ’s is shown in Fig. 6 .

n comparison with Fig. 3 it shows more sensitivity. This is not sur-

rising, because the sum over the K ij ’s in Eq. (21) will no longer be

he same, and this kind of variation was not taken into account in

he analysis of the last section, only changes in the ρ i ’s. Biochemi-

al circuitry could be posited to further adjust A , but because mu-

ations in the K ij ’s happen in the process of evolution, additional

iochemical circuitry is not necessary if one allows for changes in

he value of A to occur during evolution. Any detailed discussion

n this topic becomes far too speculative to warrant serious con-

ideration at this stage. 
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Fig. 5. (a) The average fractional number of mistakes made as a function of the Hamming distance between the initial state and the pattern, n . Here the total number of 

RNA species is N = 50 and the total number of patterns to be recalled is M = 3 . The triangles are the results for βδ/N = 4 and the initial total unbound concentration equal 

to that of the patterns to be recalled. The pentagons are for the same parameters but the initial unbound concentration has one more up “spin”. The crosses are with those 

same initial conditions but with βδ/N = 8 , and the diamonds are with one more up “spin”. The lines are simply a guide for the eye. Here a = b = 0 . 4 , and ε = δ = 0 . 6 

(see Eqs. (8) and (10) ). (b) The same situation with a = b = 0 . 001 , and ε = δ = 0 . 999 . 

Fig. 6. (a) The average normalized Hamming distance is plotted versus fractional mutation frequency, f K , of equilibrium constants K ij . Diamonds correspond to βδ/N = 4 . 0 , 

and squares βδ/N = 8 . 0 . Here a = b = 0 . 4 , and ε = δ = 0 . 6 (see Eqs. (8) and (10) ). (b) The same situation with a = b = 0 . 001 , and ε = δ = 0 . 999 . 
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In reference to Boltzmann machines, Fig. 7 shows the fractional

number of mistakes plotted versus the number of variable units,

N v , for two different temperatures, βδ/N = 0 . 5 and 4.0. It is quite

similar to Fig. 4 . 

6. Discussion 

6.1. Magnitude of RNA interactions 

Now I estimate the density and timescales for non-coding RNA

from the available data. 

One expects that little or none of the long ncRNA in the cy-

toplasm will import back into the nucleus and therefore we can

confine our attention to RNA that is preferentially localized to the

nucleus. Given its regulatory role, it is not surprising that ncRNA is,

on average, preferentially enriched in the nucleus, in contrast with

mRNA that is exported into the cytoplasm. The ratio of nuclear

to cytoplasmic ncRNA is approximately 1 ( Derrien et al., 2012 ). In

other words, approximately half of it is localized to the nucleus. 

Given its predominantly regulatory function, it is not surprising

that the total amount of ncRNA present in a cell is estimated to
e lower than the total amount of mRNA. It is appears, on aver-

ge that long ncRNA has approximately a tenth of the abundance

f mRNA, although this number fluctuates substantially depending

ell type, much more than for mRNA ( Cabili et al., 2011 ). The total

umber of mRNAs in a mammalian cell is approximately ( Milo and

hillips, 2015 ) 5 × 10 5 . This implies that the total amount of long

cRNA is approximately N L = 2 × 10 4 per cell nucleus. 

A mammalian cell nucleus has a radius of approximately r n = 3

μm. This gives a long ncRNA density of ρL = 3 N L / (4 π r 3 n ) , or an

verage separation of r L = ρ−1 / 3 
L 

, which is approximately 0.18 μm.

ecause of the heterogeneous nature of the nuclear environment,

t is not easy to get a precise estimate for diffusion coefficients,

ut mRNA in the nucleus appears to have a diffusion coefficient

 ≈ 0.1 μm 

2 /s ( Politz and Pederson, 20 0 0 ) which should be sim-

lar to that of ncRNA, although there will be a large range de-

ending on the species. Therefore the time for an ncRNA molecule

o move a distance r L is on average r 2 
L 
/ 6 D, which is approxi-

ately, 0.05 s. In that time, it will not necessarily encounter an-

ther ncRNA molecule, and this will increase the time scale by a

actor of r / d , where d is a measure of the size of the molecule.
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Fig. 7. (a) The average fractional number of mistakes made as a function of the number of variable units, N v , in the Boltzmann machine analog illustrated in Fig. 1 , here 

a = b = 0 . 4 , and ε = δ = 0 . 6 (see Eqs. (8) and (10) ). The crosses are for the case βδ/N = 0 . 5 , and the squares are for βδ/N = 4 . 0 . (b) The same situation with a = b = 0 . 001 , 

and ε = δ = 0 . 999 . 
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or a 10 0 0 base pair RNA, with a persistence of length of ap-

roximately 40 Å, this gives d ≈ 40 nm, and therefore r L / d ≈ 5. This

eans that the collision time is approximately 0.25 s. 

The half-life for ncRNA in the nucleus is of order 30 min to an

our ( Lee, 2012 ). Therefore one expects that there is a large differ-

nce between the time scale for equilibration and for degradation

f these ncRNA molecules, as assumed by the model here. 

The free energy gain due to base pair conjugation is high,

bout 2 k B T per base pair at biological temperatures ( Lesnik and

reier, 1995 ). This is why in general, RNA easily associates form-

ng secondary structures. Some species of ncRNA might associate

trongly with others, so that it binds irreversibly and is eventu-

lly degraded. Adding this possibility would complicate the anal-

sis. Excess RNA from the more abundant species will be left un-

ound and can then bind with other RNA. 

Another effect is the association of ncRNA with RNA binding

roteins ( Turner et al., 2014 ) (RBPs). By forming secondary and

ertiary structure and associating with RBPs, the interactions be-

ween ncRNA is likely to be reduced. However in this situation, one

oes not expect the ncRNA to be completely inert, but it seems

lausible to suggest the existence of a large number of relatively

eak attractive interactions between the ncRNAs that would be re-

ersible. These kinds of interactions would then lead to the weak

ut promiscuous interactions required for collective regulation. 

It should be pointed out that experimentally, duplexes between

ifferent RNA do form between ncRNA molecules ( Sharma et al.,

016 ). In this work, the authors developed a sophisticated method

o assess the presence of inter-RNA duplexes. It involved crosslink-

ng existing RNA duplexes in vivo and digestion of the un-

rosslinked RNA. Following a number of further steps involving

igation and uncrosslinking, the resultant RNA were processed uti-

izing high throughput sequencing. Using probabilistic modeling to

uppress intrachain interactions, they obtained a large number of

nteractions between all major classes of ncRNA and mRNA, for ex-

mple, small nuclear RNA (snRNA) and long intergenic non-coding

NA (lincRNA). Their method was able to reproduce many known

nteractions and studied, in detail, interactions between snRNA.

he interactions were dominated by the most prevalent species,

or example ribosomal RNA (rRNA), but there were interactions

ound between different lincRNA. There are clearly many interac-

ions they found that could not be contributing to the mechanism

roposed here, for example, rRNA, tRNA, and miRNA. But that still

eaves a large fraction that cannot as yet, be ruled out. The main

p  
roblem with the interactions found in this work ( Sharma et al.,

016 ), is that they are most likely of a type that would be too

trong to be relevant to collective regulation, but it is possible that

ome of those would be weak enough to be reversible. Altogether,

his work shows the abundance of strong duplex interactions be-

ween RNA–RNA interactions. The interactions hypothesized for the

odel here should be even weaker, and are therefore likely to be

ven more abundant. It is expected that these RNA molecules will

lso associate with proteins, and this will suppress duplex forma-

ion. This association with proteins will not necessarily preclude

ifferent RNA molecules from associating with each other, but will

erve to weaken interactions between them. 

Another work investigating RNA–RNA interactions for specific

ases of ncRNA ( Engreitz et al., 2014 ) was performed using RNA

ntisense purification. It would be interesting to pursue this kind

f research further, to better quantify the abundance and strength

f these ncRNA-ncRNA interactions experimentally. If indeed there

re a large number of weak interactions with properties consistent

ith the collective regulatory mechanism propose here, it would

ake this possibility much more promising. 

It should stressed that none of the above proves that the mech-

nism proposed is present in real biological organisms. But it does

ake the case for further investigation, to rule out if the weak in-

eractions needed are too insignificant to give rise to collective reg-

lation. 

.2. Mechanisms for creation 

Above I described a biophysical mechanism capable of per-

orming sophisticated computation, using RNA produced by the

enome. The ability to make high-level decisions based on its in-

uts has obvious advantages to a biological organism. Taking ad-

antage of the large amounts of non-coding RNA produced by a

ell, should increase the computational capabilities roughly accord-

ng to the number of mutual interactions between the different

NA species. For example, if a mechanism similar to this was to

e utilized, it would allow an organism to learn from its previous

volutionary history by encoding past environments in the values

f the equilibrium constants { K ij }. However, it is far from clear that

 mechanism similar to what has been described here, does in fact

xist. 

In this section I give some potential ways that Eq. (27) , which

ives the rate of creation of a RNA species i , could be realized in

ractice. The crucial quantity that the system must measure is the
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Fig. 8. The creation rate of RNA given by Eq. 27 as a function of the total to un- 

bound RNA C / ρ , for a given RNA species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Two possible mechanisms for enhanced RNA transcription when additional 

RNA has been bound. (a) A RNA-dependent RNA polymerase (RdRP) copies an RNA 

molecule that is bound to another one forming a region of double stranded RNA 

(dsRNA). An RNA sensor, S, detects the dsRNA which then regulates the rate of tran- 

scription of the RdRP. (b) A site on RdRP, shown by the circle, represses transcrip- 

tion when RNA is bound to it. This is indicated by the arrow pointing from the RNA 

end to the binding site. The transcribed RNA is inhibited from associating with this 

regulatory site, by binding to another RNA molecule, shown in light gray. 
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fraction of unbound RNA. Fig. 8 plots the general form of this func-

tion. The specific parameters used here are δ = 0 . 4 and b = 0 . 6 .

The curve starts at C/ρ = 1 and increases from there. This cre-

ation rate deviates subtly from linearity, and a large number of

functional forms with this general shape would be suitable. For

example we have already seen that β can be considerably altered

with only a modest effect on performance. The choice of the tanh

function was also not necessary and a wide variety of sigmoidal

shaped functions are expected also work as has been investigated

in neural network models ( Hertz et al., 1991 ). I will now discuss

what kinds of models could be expected to give this general shape

for the creation rate. 

Let us first discuss a non-genomic mechanism, which is the

most direct, but least likely to exist biologically. There is evidence,

in humans ( Kapranov et al., 2010 ), that there is a biochemical

pathway recreating a similar function to RNA-dependent RNA poly-

merase (RdRP) ( Spiegelman et al., 1965 ). RNA molecules could in

principle be copied without reference to DNA. But in this case,

the rate of transcription should depend on the ratio of C / ρ , that

is, the total to unbound RNA of a single species. One mechanism

to do this would be to have a double stranded RNA sensor. Toll-

like ( Akira, 2001 ) double stranded RNA sensors do exist, such as

TLR3 ( Alexopoulou et al., 2001 ) but these are membrane spanning

however. This possibility is shown pictorial in Fig. 9 (a). A less fan-

ciful mechanism is illustrated in Fig. 9 (b). Here the putative RdRP

is regulated by a site on it, shown as a circle. If RNA binds to this

site, it will inhibit transcription. The most likely RNA to be bound

is the same species that is being copied due to its close proximity

to the RdRP. This potential binding process is shown by the arrow

going from the end of the transcribed RNA, and pointing to the

binding site. If a third RNA molecule, shown in light gray, asso-

ciates with the copied RNA, it will inhibit binding to this site. This

will give enhanced RNA creation as the ratio of total to unbound

RNA increases. 

Now consider more conventional and promising genomic mech-

anisms that give creation rates similar to Fig. 8 . There are a num-

ber of theoretical possibilities for how the creation of RNA can de-

pend on the ratio of total to unbound RNA. The unbound RNA can

interfere ( Agrawal et al., 2003 ) with the translation of an activa-

tor protein specific to the RNA species being transcribed from the

DNA. The larger the amount of free RNA, the lower the rate of acti-

vator production, and hence the lower the rate of RNA production.

A more concrete possibility is a similar mechanism that is

known to operate in some situations ( Sigova et al., 2015; Take-

mata et al., 2016; Takemata and Ohta, 2017 ). Many ncRNAs are

transcribed around DNA regulatory elements, such as enhancers.

These ncRNA appear to increase the binding of transcription fac-

tors, which increases transcription rate. For example, in fission

yeast Schizosaccharomyces pombe , transcription of ncRNA by RNA
olymerase II (RNAP II), from the promoter region of f bp1 + 

fructose-1,6-bisphosphatase 1), has been shown to depend on the

mount of that ncRNA that is present. The reason for this is due to

he ability of this ncRNA to facilitate the binding of a transcription

actor Atf1 on the f bp1 + promoter ( Takemata et al., 2016 ). The

echanism for this has been hypothesized to be due to the ability

f the ncRNA to down-regulate ( Takemata et al., 2016 ) corepressor

unctions of Tup proteins ( Asada et al., 2015; Mukai et al., 1999 ). 

Another example of the above enhancement is work in em-

ryonic stem cells of the transcription factor Ying Yang 1

YY1) ( Sigova et al., 2015 ). A number of pieces of evidence pointed

o similar enhanced transcription in the presence of ncRNA. For ex-

mple, artificially tethering RNA near YY1 binding sites, increased

Y1 occupancy. These results suggest that ncRNA that is tran-

cribed in proximity to YY1 acts to enhance further ncRNA tran-

cription in this region. 

Various models have been proposed ( Takemata and Ohta, 2017 )

n how this enhancement could take place, including the trap-

ing of transcription factors by the ncRNA, the recruitment of pro-

eins that increase transcription factor binding, and the inhibition

f proteins the repress transcription factor binding. These mech-

nisms are quite general; they imply that an increase in ncRNA

oncentration around some particular regulatory elements, should

nhance further ncRNA transcription. This increased activation by

cRNA is a known general function of it ( Lee, 2012 ). 

In the case studied here, the above enhancement mechanism

an potentially lead to the desired behavior shown in Fig. 8 . Bind-

ng of additional ncRNA will increase the local ncRNA concentra-

ion which, as argued above, will lead to an increased rate of

cRNA transcription. This is illustrated in Fig. 10 . RNA polymerase

labeled RNAP), transcribes ncRNA from DNA. This ncRNA enhances

he binding of a transcription factor (TF). Binding of more ncRNA
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Fig. 10. Possible mechanism for enhanced transcription due to bound RNA. RNA 

polymerase II (RNAP) transcribes DNA producing ncRNA. The presence of RNA en- 

hances the binding of a transcription factor (TF), further enhancing the transcription 

of ncRNA. 
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ill further increase transcription due to the increased concen-

ration of ncRNA near TF. Note that this mechanism is measur-

ng bound ncRNA, rather than measuring unbound ncRNA. More

pecifically, it is measuring the probability of binding for an indi-

idual ncRNA molecule that is being transcribed. This gives a mea-

ure of precisely what we want, the ratio of bound ncRNA to its to-

al concentration for species i , which equals 1 − ρi /C i . The fact that

t correctly divides ρ i by the total concentration, and is similar to

nown enhancement mechanisms, makes it a promising direction

o consider. 

. Conclusions 

Genetic networks are extremely complex and individual path-

ays have taken years of study to elucidate. It is quite apparent by

ow that ncRNA plays an important role and is not just “junk” as

ad been previously hypothesized ( Consortium et al., 2012; Djebali

t al., 2012; Mercer et al., 2009 ). The purpose of this work is not

ypothesize yet another theoretical model that can be added to the

ist of potential mechanisms that biology may be using. Instead, it

s to take a step back and look for new paradigms that can be used

o understand genetic regulation. 

Instead of thinking of interactions between individual elements

s having a substantial and measurable effect on each other’s be-

avior, the view taken here, is that there is a class of interactions,

ach of which is negligible, but collectively they are able to control

ehavior, perhaps even more effectively, than the sparse network

odels currently employed. Of course there are many examples

here a single interaction has a large effect on gene expression,

owever here I examined if collective regulation could also play a

ubstantial role. 

Collective regulation is certainly possible mathematically, and

as the same general architecture that is now used in machine

earning systems ( Hertz et al., 1991 ). What I have argued here is

hat this is also biologically and physically plausible. It is certainly

he case that there are strong specific interactions that are in-

olved in many regulatory pathways. However there is also a large

mount of ncRNA that is highly associative, and is not very spe-

ific. The approach taken here is to accept the existence of thou-

ands (or millions) of potential interactions between different RNA

pecies and understand how these could evolve from junk, inserted

y retroviruses, to become useful additions to the cell’s genome. 

The interactions between the RNA molecules in equilibrium

ield a chemical equilibration between bound and unbound states.

n reality there will be many higher order interactions and differ-

nt internal states of molecules. These will surely affect the way

omputation takes place in these systems, but would not necessar-

ly diminish their computational capabilities. Similarly, models of

eurons that only consider two-body interactions, such as Boltz-

ann machines, leave out a lot of higher body effects that are

resent with real neurons. In this sense, the work here is only re-

lly a proof of principle. If collective regulation does exist, it would

learly be more complex than described here. 
The chemical equilibration formula, Eq. (5) , contains the seed of

ow this system is related to artificial neural network models, by

aking an analogy with Eq. (1) . The equilibrium constants K ij are

nalogous to the interactions J ij between different “spins” in neural

etworks. It is the sum of all unbound RNA, weighted with equi-

ibrium constants, that self consistently must give back the correct

oncentration of unbound RNA. 

The constant degradation of RNA can be taken into account

ith a first order reaction rate equation, Eq. (6) . But there also

eeds to be a mechanism for the replenishment of RNA. First a

omeostatic mechanism needs to be included to regulate the total

oncentration of all RNA. But the most difficult part of the analysis,

hat I investigated analytically and numerically, is that the creation

ate of the ith species should only be a function of the ratio of that

NA’s total concentration to the amount that is unbound, C i / ρ i .

uch a function should look similar to what is shown in Fig. 8 . I

as able to show for a large class of interactions, that this func-

ion can be universal, in that it only depends C i / ρ i , and with no

ependence on the particular species of RNA being created. 

The physical binding and unbinding of ncRNA should hap-

en according to estimates using empirical data discussed in

ection 6.1 . RNA species creation are also subject to a variety of

egulatory mechanisms. The validity of the proposal outlined here

hen boils down to whether there exists RNA creation rates in

he nucleus that depend on C i / ρ i according to Fig. 8 . I argued in

ection 6.2 that in fact, there is evidence for similar mechanisms

lready. This does not prove the existence of the kind of computa-

ional hardware discussed here, but argues that it is at least plau-

ible. Further discussion of the issue of its evolutionary likelihood

s unlikely to be fruitful and there appears to be many schools of

hought on this issue ( Welch, 2017 ). 

These kinds of computational paradigms have several advan-

ages, one being that they are far more robust than circuitry with

ew connections ( Hertz et al., 1991 ), and this would mean that one

ould expect ncRNA would have a much higher mutation rate than

RNA, yet be highly functional. If this kind of collective regula-

ion does exist, it would imply a reexamination of how mutation

ate can be used as a criterion for when ncRNA is under evolu-

ionary constraint. It should also be noted that this feature of high

utation rate makes such massive parallelism unlikely in protein

egulatory networks, which also have clear similarities with neural

etworks ( Bray, 1995 ). 

This mechanism also ties in with work to understand the

olecular evolution of the genome, for example, transposable el-

ments, which constitute approximately 44% of our genome, as ev-

dent from the Human Genome Browser ( Kent et al., 2002; Mills

t al., 2007 ). It would be of interest to consider the beneficial ef-

ects of the ncRNA discussed here to see their effects of population

enetics simulations of them ( Kijima and Innan, 2013 ). 

In this kind of collective mechanism, one expects that typically

here will be weak influences between any two RNA molecules,

nd also very many such weak interactions. This makes it difficult

o reconstruct the circuit diagram, in contrast to sparser networks

here powerful methods exist ( Mochizuki et al., 2013 ). In addition,

olecules that are involved with this kind of collective regulation

ould have other functions, making it hard to identify specific in-

eractions that support this picture. The understanding of ncRNA–

cRNA interactions is still in its infancy. 

This work was supported by the Foundational Questions Insti-

ute http://fqxi.org . 
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