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We extend classical coarse-grained entropy, commonly used in many branches of physics, to the quantum
realm. We find two coarse grainings, one using measurements of local particle numbers and then total energy,
and the second using local energy measurements, which lead to an entropy that is defined outside of equilibrium,
is in accord with the thermodynamic entropy for equilibrium systems, and reaches the thermodynamic entropy
in the long-time limit, even in genuinely isolated quantum systems. This answers the long-standing conceptual
problem, as to which entropy is relevant for the formulation of the second thermodynamic law in closed quantum
systems. This entropy could be in principle measured, especially now that experiments on such systems are
becoming feasible.
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Entropy, and its increase, are crucial concepts applied
across an array of physical theories and systems. Yet entropy
has many distinct proposed definitions [1,2], and there are sit-
uations in which it is unclear which if any of these definitions
apply, and which entropies can be considered as suitable can-
didates for entropy appearing in the second thermodynamic
law.

Consider a closed physical system—be it isolated in a
laboratory or “the whole Universe”—undergoing Hamiltonian
evolution with no interaction with the outside world. Classi-
cally, thermal entropy and its increase are generally treated
through coarse graining of phase space. A system can have
time-evolving coarse-grained quantities, such as order param-
eters, energy, and currents—as is the case in fluid dynamics or
phase transitions [3,4]. An entropy measure can then naturally
and generically rise if it attributes higher entropy to coarse-
grained states of greater phase-space volume.

In other words, coarse graining describes the macroscopic
degrees of freedom, and the second thermodynamic law can
be viewed as the tendency of the microscopic state of the
system to naturally evolve into a macroscopic state of larger
phase-space volume. The second thermodynamic law that
“total entropy of an isolated system cannot decrease over
time” then follows easily when applied to this “Boltzmann”
entropy—even if the Gibbs entropy is conserved, or zero.

In a closed quantum system, the standard von Neumann
entropy is constant (and zero for a pure state), in close
correspondence to the classical Gibbs entropy. Such entropy
therefore cannot underlie the second thermodynamic law. The
natural question to ask is then: What kind of entropy does
increase in an isolated quantum system? In analogy with
classical thermodynamics, to find such entropy it would be
desirable to define a notion of coarse graining, and with it
a quantum equivalent of Boltzmann entropy. This has not,
we would argue, previously been done in any natural or
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compelling way. This is because the corresponding procedure
of coarse graining has been hard to formulate in quantum
mechanics due to the lack of commutation of conjugate de-
grees of freedom. This problem is particularly severe when
discussing coarse-grained entropy, where phase space volume
is a crucial concept.

Instead, other quantum mechanical definitions of entropy
have been developed, such as diagonal entropy [5–8], en-
tropy of an observable [9–11], entanglement entropy [12–15],
which can give rise to the thermodynamic entropy even in pure
states [8,16–20], and information-theoretic quantities such as
quantum relative entropy [21–23], and max entropy [24,25].
However, their relation to the coarse graining used in classical
systems is obscure or lacking, and they can behave oddly in
certain cases.

In this Rapid Communication we argue that we can, in
fact, define a coarse graining in quantum mechanics in a
satisfactory and surprisingly elegant way. The resulting def-
inition of entropy can, like classical Boltzmann entropy, de-
scribe quantum systems becoming disordered within a chosen
coarse-grained description—the quantum mechanical equiva-
lent of “spilling coffee on the table.” This entropy generically
increases, even in an isolated quantum system. However,
unlike classical Boltzmann entropy, it exhibits purely quantum
features such as nonlocality and noncommutativity. In this
formalism, coarse graining can be viewed as a sequence of
measurements. And since these measurements can be chosen
freely by an observer (with the aim to describe a particular
physical scenario), we call this formulation observational
entropy.

We identify two methods of coarse graining, and thus two
entropy quantities, that are particularly interesting. The first
entropy can be understood as uncertainty in outcomes of two
consecutive measurements, first in measuring local particle
numbers and then total energy; the second can be understood
as uncertainty in measuring local energies. These entropies
describe regions of space trying to equilibrate with each other.
Both of these entropies converge to thermodynamic entropy
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as the system thermalizes, and they extend well to nonequi-
librium situations, making them suitable candidates for the
dynamical description of equilibration of isolated quantum
systems.

Observational entropy elucidates the dynamics of a variety
of quantum thermodynamic systems and may shed light on
thorny questions such as the entropy of black holes and
horizons in general, or the arrow of time in the Universe as
a whole. Experimentally, it could have applications in cold
atoms, where experiments on isolated quantum systems are
now becoming feasible [26,27].

We start by considering making a single observation on
a quantum system characterized by a density matrix ρ̂. In
analogy to classical physics, we define measurements of the
system that partition it into coarse-grained macrostates. We do
this through a set of trace-preserving projectors {P̂i}i , indexed
by i, acting on a Hilbert space H.

For example, given a system with N indistinguishable
particles, we can coarse grain them into p bins, each of width
δ. We wish to make observations that will give us the bin
that every particle is in. To do this, we denote the particle
positions by �x = (x (1), . . . , x (N ) ), where each element can
take one of the equidistant values x1, . . . , xp. Because the
particles are indistinguishable, any permutation π of elements
of �x constitutes the same vector, �x ≡ π (x (1), . . . , x (N ) ). With
i → �x, we define a coarse graining as a set of projectors

CX = {
P̂

(δ)
�x

}
�x, where P̂

(δ)
�x =

∑

�̃x∈C�x

| �̃x〉〈�̃x| (1)

and C�x represents a hypercube of dimension N and width
δ = xj+1 − xj that represents the possible particle positions
in a single macrostate. Our coarse-graining CX then represents
measurements that can be done that will characterize the
system positional macrostate at a scale of δ. The above coarse
graining is written in a rigorous but fairly complicated way,
but since we consider indistinguishable particles, its meaning
is quite simple: it corresponds to measuring a number of
particles in each bin of size δ.

Performing the above coarse-grained measurement does
not give the precise position of the particles. After the mea-
surement, if the particles were confined to a lattice, a further
measurement could be done that would give the positional
basis states �x precisely. In more generality, after performing
a coarse-grained measurement defined by a set of projectors
{P̂i}, the number of possible outcomes of a second measure-
ment that would determine the basis state of the system is
tr[P̂i] and so with no more information, we would then assign
equal weights to these different outcomes. The probability
of finding the system in a particular subspace Hi of the
total Hilbert space is equal to pi = tr[P̂i ρ̂]. Therefore the
probability of finding the system in any of the basis states is
pi/tr[P̂i].

This allows us to define observational entropy for coarse-
graining C = {P̂i} as the Shannon entropy of these probabili-
ties,

SO(C)(ρ̂) ≡ −
∑

i

pi ln
pi

tr[P̂i]
. (2)

pi can be interpreted as a probability of a microstate of the
system (described by a density matrix ρ̂) to be in macrostate
“i,” while Vi ≡ tr[P̂i] denotes volume of that macrostate. Vi is
always positive and

∑
i Vi = dim H. The above formula can

be also rewritten as SO(C)(ρ̂) = −∑
i pi ln pi + ∑

i pi ln Vi .
The first part corresponds to the mean uncertainty in to which
macrostate the state of the system belongs to, while the second
part corresponds to the mean uncertainty about the system
after the coarse-grained measurement is performed.

The idea of coarse-grained projections is mentioned very
early on by von Neumann [28] with an expression similar
to this for the particular case of coarse-grained energies that
he attributes to Wigner. The general form of Eq. (2) is men-
tioned later by Werhl [29], in connection with developing a
quantum mechanical master equation, and by Brun and Hartle
in connection with coarse-grained histories [30]. By itself, it
does not connect to thermodynamic entropy, for which it is
necessary to consider multiple coarse grainings, as we will do
later. However, it has a number of interesting properties that
we studied and that are briefly discussed below. The detailed
definitions and proofs are published in [31].

(1) Observational entropy is a quantum analog of Boltz-
mann entropy: for a density matrix contained in a subspace
Hi , i.e., P̂i ρ̂P̂i = ρ̂, its value is equal to the logarithm of the
volume of the subspace,

SO(C)(ρ̂) = ln Vi = ln dimHi . (3)

This aligns with the coarse-graining interpretation that we
gave: because the basis state is not measured to more pre-
cision than the one given by coarse-graining C, this entropy
represents the inability of such measurements to acquire more
accurate information even if the state of ρ̂ is known to more
precision.

(2) In classical thermodynamics, a point in phase space
belongs to a single macrostate. Due to the superposition in
quantum mechanics, even a pure state can span over several
macrostates. This leads to a necessity of considering nontrivial
distributions pi in Eq. (2), which is where observational
entropy differs from Boltzmann entropy.

(3) The degree to which coarse-grained measurements
specify a system can be made more precise by considering
two coarse grainings C1 and C2, and saying that C2 is “finer
than” C1, denoted by writing C1 ↪→ C2, if projectors in C1 can
always be written as the sum of projectors in C2. In this case,
it can be proven that

SO(C1 )(ρ̂ ) � SO(C2 )(ρ̂). (4)

This intuitively means that entropies will be larger when the
coarse graining is coarser.

(4) There are general bounds that we have proven for it:

SVN (ρ̂ ) � SO(C)(ρ̂) � ln dimH, (5)

where SVN is the von Neumann entropy.
(5) Observational entropy is extensive. Consider a

composite of m subsystems characterized together by a
separable state ρ̂ = ρ̂ (1) ⊗ · · · ⊗ ρ̂ (m). If we impose a coarse-
graining C = C (1) ⊗ · · · ⊗ C (m) = {P̂i1 ⊗ · · · ⊗ P̂im}i1,...,im ,
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which coarse grains the different subsystems separately, then

SO(C)(ρ̂) =
m∑

k=1

SO(C (k) )(ρ̂
(k) ). (6)

(6) If the coarse-graining C is composed of projectors
that commute with the Hamiltonian, the observational entropy
SO(C)(ρ̂t ) (of the time-evolving density matrix ρ̂t ), does not
vary in time.

(7) Otherwise, for a large class of nonequilibrium initial
states, the observational entropy increases. A provable result
is that starting with an initial state that is contained in one
of the subspaces Hi the observational entropy increases or
remains the same, at least for a short time.

This definition of entropy can partition Hilbert space us-
ing a single coarse-graining C that corresponds to a single
measurement, for example of position, that one can perform
on the system. But to get a useful generalization of coarse-
grained classical entropies, we should consider a second
coarse-graining corresponding, for example, to measurement
in energy. Indeed our classical notion of a coarse-grained
phase space requires consideration of two types of mea-
surements, for example position and momentum, that in the
quantum mechanical case do not commute. Therefore we need
to generalize the above definition of entropy to allow for the
series of possibly noncommuting measurements. We will find
that this leads to a surprisingly simple prescription for coarse
grained but fully quantum mechanical entropy.

For simplicity, consider two different coarse grainings
C1 = {P̂i1}i1 and C2 = {P̂i2}i2 that may not commute. pi1i2 =
tr[P̂i2 P̂i1 ρ̂P̂i1 P̂i2 ] represents the probability of obtaining result
i1 in the first measurement while obtaining result i2 in the
second measurement when two consequent measurements in
bases C1 and C2 are performed on the state described by
the density matrix ρ̂. Equivalently, pi1i2 can be interpreted
as a probability of a microstate of the system (described by
a density matrix ρ̂) to be in a multimacrostate i = (i1, i2)
of volume Vi1,i2 ≡ tr[P̂i2 P̂i1 P̂i2 ]. Vi1,i2 is always positive and∑

i1,i2
Vi1,i2 = dim H. This can be generalized further [32] to

give
Definition 1. Let (C1, . . . , Cn) be an ordered set of coarse

grainings. We define the observational entropy with coarse-
grainings (C1, . . . , Cn) as

SO(C1,...,Cn )(ρ̂) ≡ −
∑

i1,...,in

pi1,...,in ln
pi1,...,in

Vi1,...,in

, (7)

where the sum goes over elements such that
pi1,...,in ≡ tr[P̂in · · · P̂i1 ρ̂P̂i1 · · · P̂in] 	= 0, and Vi1,...,in =
tr[P̂in · · · P̂i1 · · · P̂in ].

It is important to note that in the above definition, the
order of coarse grainings does matter: generally SO(C1,C2 ) 	=
SO(C2,C1 ). This noncommutativity is another point where ob-
servational entropy differs from Boltzmann entropy.

For finite-dimensional systems, observational entropy can
be expressed using Kullback-Leibler divergence as

SO(C1,...,Cn )(ρ̂) = ln dim H − DKL

[
P (ρ̂ )

∣∣∣∣P (ρ̂id )
]
, (8)

where Pi1,...,in (ρ̂) = tr[P̂in · · · P̂i1 ρ̂P̂i1 · · · P̂in ]. The observa-
tional entropy therefore measures the distance between prob-
ability distributions of measurement outcomes produced by

the density matrix ρ̂ and by the maximally uncertain density
matrix ρ̂id = Î / dim H.

We can generalize the notion of finer coarse grainings to
multiple coarse grainings and prove the following theorem.
(For details see [31].)

Theorem 1. For any ordered set of coarse-grainings
(C1, . . . , Cn) and any density matrix ρ̂,

SVN (ρ̂) � SO(C1,...,Cn )(ρ̂) � ln dimH, (9)

SO(C1,...,Cn )(ρ̂) � SO(C1,...,Cn−1 )(ρ̂). (10)

SVN (ρ̂) = SO(C1,...,Cn )(ρ̂) if and only if for all i1, . . . , in
there exists P̂ρ ∈ Cρ̂ such that P̂in · · · P̂i1 P̂ρ = P̂in · · · P̂i1 ,
P̂ik ∈ Ck . SO (ρ̂) = ln dimH if and only if for all i1, . . . , in,

pi1,...,in = Vi1 ,...,in

dimH . SO(C1,...,Cn )(ρ̂) = SO(C1,...,Cn−1 )(ρ̂ ) if and only

if for all i1, . . . , in, pi1,...,in = Vi1 ,...,in

Vi1 ,...,in−1
pi1,...,in−1 .

In the above, we used coarse graining given by the density
matrix Cρ̂ . For a Hermitian operator Â, CÂ consists of projec-
tors from the spectral decomposition of Â.

With general Definition 1 in mind, it is possible to consider
many possible kinds of observational entropies, by consider-
ing different types of composite coarse grainings defined in
terms of sequences of coarse-grained measurements. It is not
obvious that any of these have any relation to thermodynamic
entropy, but we now describe two versions that do bear a close
connection.

In Eq. (1) we introduced coarse graining in position space
with p number of bins. Consider these and “fine-grained”
energy projectors

CE = {P̂E}E, P̂E = |E〉〈E|. (11)

We construct entropy

SxE ≡ SO(CX,CE )(ρ̂), (12)

which corresponds to measuring the coarse-grained position
of the system (or equivalently, measuring the local particle
numbers), and then its energy.

The second entropy is similar in spirit but it employs a
different coarse graining. We start by considering Hilbert
space divided into two parts H(1) and H(2), the joint system
being H = H(1) ⊗ H(2). The Hamiltonian Ĥ can then be
separated into three terms

Ĥ = Ĥ (1) ⊗ Î + Î ⊗ Ĥ (2) + εĤ (int), (13)

where Ĥ (1) and Ĥ (2) are the Hamiltonians that describe inter-
nal interactions in the first and second systems, respectively,
and Ĥ (int) is an interaction term. For large subsystems and
local interactions, the magnitude of this term is expected to be
small and hence we have introduced a parameter ε to indicate
this. Consider a coarse graining that projects to the eigenstates
of the local Hamiltonians Ĥ (1) and Ĥ (2), which corresponds
to simultaneous measurements of local energies. We call this
the factorized observational entropy (FOE). It can be formally
written as

SFOE ≡ SO(CĤ (1) ⊗CĤ (2) )(ρ̂). (14)

This can be easily generalized to an arbitrary number m of
local Hamiltonians, rather than two.
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FIG. 1. Time evolution of SxE (line) and the factorized obser-
vational entropy FOE (dashed line) starting in a pure thermal state.
After t = 30, the right wall is expanded to double the system size
and the system continues to evolve. The straight lines represent
thermodynamic entropies of the canonical ensemble. This graph
shows that for a typical state, SxE and FOE models the dynamical
process of equilibriation between the two regions.

While mathematically distinct, we will see below that SxE

and FOE have similar behavior, and can be interpreted in a
similar fashion. Both measure how democratically the total
energy is distributed over the regions of space, which are
defined by coarse-graining CX, Eq. (1), in the case of SxE ,
and by separation into local Hamiltonians, Eq. (13), in the
case of FOE. Both entropies are maximal when the energy
contained in each region is roughly proportional to the size of
the region, and small when energy is unevenly distributed—
for example when a small region contains a large amount of
energy while a large region contains a small amount of energy.
These entropies therefore describe how close these regions are
to thermal equilibrium with each other. Entropy increase then
signifies regions equilibrating with each other by exchanging
heat until they attain the same temperature, at which point
both SxE and FOE achieve the thermodynamic entropy of the
full system.

Let us start with a numerical analysis of these quantities.
We consider a one-dimensional lattice model of spinless
fermions, with both nearest-neighbor (NN) and next-nearest-
neighbor (NNN) hopping and interactions [33] of strengths
V and V ′, respectively. We always take h̄ = V = t = 1. For
generic systems we choose the well-studied case U ′ = t ′ =
0.96 [19,20,33]. We employ hard wall boundary conditions
for our numerical experiments so that we can study the
expansion of a gas from a smaller to a larger box.

First we investigate the dynamics of the two observational
entropies SxE and FOE, both of which are coarse grained into
four subsystems (p = m = 4) of length 4 in the full system
of length L = 16. The graph of the evolution is shown in
Fig. 1. We start with a system with N = 4 particles confined
to a box of size L = 8. The system starts in what can be
described as a “pure thermal state.” It is a superposition of all
energy eigenstates, each eigenstate having a random complex

FIG. 2. The top curves show observational entropies SxE (light
red) and FOE (dark blue) for a microcanonical state (line), a ran-
dom superposition of neighboring energy eigenstates (crosses), and
energy eigenstates (dots), from top to bottom. The lowest curve is
the microcanonical entropy given by logarithm of the density of
states. Both SxE and FOE of random superposition of neighboring
energy eigenstates approximate the thermodynamic entropy. Since
these states model typical states of an isolated quantum system in far
future, this graph provides an extensive numerical evidence that for
most initial states, SxE and FOE converge to thermodynamic entropy,
even for genuinely closed quantum systems.

amplitude drawn from a distribution with a variance given
by the Gibbs distribution at inverse temperature β = 1. For
t < 30 the system is in equilibrium. At t = 30, we suddenly
enlarge the box to size L = 16 and compute the continued
evolution. Both entropies increase rapidly but smoothly, until
they reach equilibrium. The dashed lines represent entropy of
the canonical distribution. Because of finite-size effects, this
differs from the computed values of the SxE and SF by approx-
imately 10%. This behavior is robust, and holds over a wide
variety of initial states we have investigated [31]. We also
analyzed the integrable case U ′ = t ′ = 0. As expected, the
integrable case shows substantially larger fluctuations [31].

To investigate behavior of these two entropies in more
detail, we also plot SxE and FOE as functions of energy for
various equilibrium states as shown in Fig. 2; this is particu-
larly relevant for studying the long-time limit. Both entropies
are coarse grained into four subsystems (p = m = 4) of the
full generic (nonintegrable) system of size L = 20, and com-
puted for energy eigenstates, random superposed pure states,
and microcanonical mixed states. The random superposed
pure states were obtained by superposing k = 30 neighboring
energy eigenstates with complex amplitudes drawn uniformly
from the unit disk, then normalizing. The microcanonical
states were obtained by adding together the density matrices
of k = 30 neighboring energy eigenstates with equal weights.
Because of significant finite size effects, we eschew using the
canonical ensemble for comparison, and instead focus on the
microcanonical ensemble given by the density of states ρ(E);
we plot SDOS ≡ ln[ρ(E)�E] [34]. SDOS gives an entropy that,
up to an unimportant additive constant, is in thermodynamic
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limit equivalent to the thermodynamic entropy given by the
canonical ensemble [35].

The results for the two quantities are quite similar; the same
is true for the time-dependent analysis shown in Fig. 1. It can
be shown that in the ε → 0 limit in Eq. (13), SxE and FOE are
the same, and there are strong arguments that the quantities
are very closely tied for finite ε (see [31]).

As shown in Fig. 1, both SxE and FOE approximate the
thermodynamic entropy in the long-time limit. Figure 2 pro-
vide even more compelling evidence for this convergence, as
follows.

It is possible to prove that up to order ε, FOE of a canonical
state is equivalent to the canonical entropy [31], which is
equivalent to microcanonical entropy in the thermodynamic
limit [35]. Curves for both SxE and FOE approximate the
microcanonical entropy computed from the density of states—
in fact, they are almost parallel to each other. The differences
of order O(1) are unimportant in the thermodynamic limit.
The superposed states have random phases, meaning that they
describe the state of a typical wave function at some time far
in the future, which provides additional support to the claim
that in the long time limit, and for generic systems, these
two observational entropies converge to the thermodynamic
entropy.

Convergence of SxE and FOE to the thermodynamic en-
tropy can be also shown analytically [31] for generic (i.e.,
nonintegrable) systems of large size, by using connections
between nonintegrable systems and random matrix theory.
These results show that both observational entropies, in the
form of SxE and FOE, extend the idea of classical Boltzmann
entropy to quantum mechanical systems.

It is worthwhile briefly comparing the above approach
with other well-known entropies used for closed quantum
systems. The entanglement entropy is also closely related to
the thermodynamic entropy in equilibrium [18–20]. But it is
a distinct quantity that is fundamentally different from SxE

or FOE. For example, if the state is a product state, then the
entanglement entropy is zero, but SxE is not. Thermodynamic
entropy of the complete system should still be large, and thus
the entanglement entropy cannot give us a sensible measure, at

least in this case, for the thermodynamic entropy. On the other
hand, SxE is largely unaffected by this lack of entanglement
for short ranged systems. The diagonal entropy [5–8] can be
defined as observational entropy with coarse graining given
by (nondegenerate) Hamiltonian Ĥ , as Sdiag ≡ SO(CĤ ). This
quantity stays constant in an isolated system, unless one
allows transitions between instantaneous energy levels [8], or
external operations on the system [16]. On the other hand,
both SxE and FOE rise even in a genuinely isolated system.

Observational entropy may play a useful role in experi-
ments, for example on cold atoms, in which these kinds of
measurements and coarse grainings are possible. It is hard to
measure the entanglement entropy between two subsystems
directly [36], and to compute it one needs to know the full
density matrix for at least one of the subsystems, which
requires a very large set of measurements. On the other
hand, to obtain SxE , we first determine the coarse-grained
position of particles. This is equivalent to measuring the
coarse-grained density, which is frequently performed in cold
atom experiments [26,37]. Then the state energy is observed
[38]. Even if the apparatus is not precise enough to distinguish
individual eigenstates, the observational entropy with finite
energy coarse graining can still be calculated theoretically,
and compared with experimental data.

We have argued through both analytical and numerical
work that it is indeed possible to extend coarse-grained
entropy to quantum mechanics, and shown that for a vari-
ety of initial states and for nonintegrable systems, this en-
tropy generically rises, approaching the correct thermody-
namic value. It is easily understood in terms of perform-
ing subsequent measurements, has the mathematical proper-
ties expected of entropy, and has close ties to experimental
techniques. Thus observational entropy is a very promising
candidate for understanding the nonequilibrium evolution of
entropy, and the second law of thermodynamics, in closed
quantum systems.
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