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Chapter 1

Introduction

1.1 Overview

Physics tries to understand the world around us. It differs from other sciences
such as biology and chemistry, in the way it approaches problems. It attempts
to understand things from at a more fundamental level. If you want to ask a
question in physics ask “why” enough times and you’ll get a physics question.
For example, the question

• “Why don’t you want to try my fish sandwich?” Because it smells bad

• “Why does it smell bad?” Because the fish is a bit old

• “Why does old fish smell bad?” Because fish decomposes, creating a chem-
ical that smells bad

• “Why do some chemicals smell bad?” Certain chemicals bind to receptors
inside the noise which send a message to the brain, which then interprets
and decides among other things if it likes the smell or not

• “Why do certain chemicals bind specifically to certain receptors?”

At this point, the answer will have to involve concepts in physics. A vague an-
swer would be: Because the forces between the electrons and nuclei that make up
the molecules and the receptor sites favor them binding together. To understand
this in more detail, it is necessary to understand how electrons and nuclei in-
teract with each other. Physicists have studied such questions quite extensively
and give quite good answers to these questions.

If you get down to fundamental questions, such as how electrons interact,
physics can give extremely accurate answers. However if you ask a more general
question, like why you don’t happen to think that those argyle socks go with
these yoga pants, then physics is pretty hopeless. In principle such a question
could be understood from a fundamental, physics point of view, but it would be
far far too complicated to answer it. Your brain is make up of electrons, protons
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8 CHAPTER 1. INTRODUCTION

and nuclei so in principle it should be possible to understand it’s workings if
you knew exactly how your brain was constructed (which we don’t).

In some sense, we’re really quite lucky that things at a fundamental level
are so easily understood. When I say easily understood, I don’t mean that I
can tell you the laws of physics, and then you’ll understand all of physics. To
do that would require a lot more math then you probably know at present.
It would also require an intuitive understanding of physical concepts that take
most people many years to acquire. All that I mean is that you can write down
a set of equations, which in principle tell you how particles evolve in time. These
equation are really not that complicated. You can write them down in a page
or so. To solve these equations, in the case of the brain, or even in the case
of three electrons and one proton, can be extremely difficult. There is a big
difference in knowing how in principle something works and figuring out what
it’s going to do.

To start with we’re going to study mechanics. It’s a good subject to start
with. It deals with the motion of big objects, such as baseballs, blocks, cars,
or even people flying through the air. Big objects like this obey mechanics
to a ridiculously good approximation. It’s nicer to start with than electricity
and magnetism because it’s less mysterious. If you drop something you can
actually see it fall, where as electricity is slightly more difficult to conceptualize.
Hopefully you’ll study electricity and magnetism later on, as it’s pretty amazing.

Mechanics illustrates fundamental notions about physics. How starting from
simple equations, you can deduce, with no other assumptions, how a system will
behave. To do this, we’ll first have to get a grip on “units”.



Chapter 2

Units

2.1 Fundamental units

There are three fundamental units we’ll deal with in this course: length, time,
and mass. We’ll see shortly how other quantities of physical interest can be
made out of these three units.

You already have a concept of units. When someone asks the rather rude
question “how tall are you?”, you probably have an idea of what the answer is,
in some units. If you live in the U.S. you’ll know the answer in feet. If you live in
most other parts of the world, you’ll know the answer in meters. Scientists have
tended to adopt the units of meters. There’s no particularly good reason for
this, the only thing that’s good is that it’s quite standard. When a scientist in
Zimbabwe says something is 1.06 meters, scientists in Moscow will know exactly
what is meant. If everyone had different measures of length, then it would make
life far too complicated.

Same with time. There is nothing fundamental about the notion of a sec-
ond, it is roughly one sixtieth of one sixtieth of one twenty fourth of the time
it take the earth to spin around its axis once. It’s completely historical. Nowa-
days, scientists have adopted some standard for what a second is to avoid any
misunderstandings. You have a pretty good intuitive understanding of a second.

Mass is something that can be a little trickier to understand. When you run
around on the moon, you’ll notice that you seem to be able to jump higher. You
actually weigh less. Does that mean to say you have less mass? Well actually
no. You have the same mass (for all you afficianados of relativity out there,
keep a lid on it!). You have the same mass in either case. We’ll talk more about
mass when we discuss Newton’s laws. Mass is measured in kilograms. Mass is
normally measured in kilograms. If you like working with feet instead of meters,
you should know that the pound measures force instead of mass; you can use
the associated unit of mass called a “slug”, but they’re slimy and I wouldn’t
advise it. (Like most aspects of British units, things are actually a bit more
murky, but this is good enough.I’m also tired of all these UCSC slug jokes so I

9
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won’t make any more stupid puns for the moment.

Here we’ll mostly deal with “SI” units, kilograms (kg), meters (m), and
seconds (s).

2.2 Other quantities

OK, now we’re in a position to understand how to make other units. A good
place to start is with the idea of density. Density measures, well, how dense
something is. If you take a bunch of cotton candy, you’d say it has a low
density because it takes up a large volume, but doesn’t have much mass. So
density should involve the ratio of mass to volume. We physicists like Greek
symbols to make all this stuff seem more sophisticated. Here it goes: the density
ρ is defined as the ratio of mass m to volume V .

ρ =
m

V
(2.1)

The units of density are what? The units of mass over the units of volume.
What’s the units of volume? Volume always involves a length cubed. For
example, the volume of a cube of side L is V = L3. The units of volume
are always the same, independent of the shape of the object and are length3.
So this means that now we can express the units of density in terms of two
fundamental units as mass/length3. To save writing and typing, just write this
as M/L3, . . . much easier. If you are working with SI units, as we mostly will
be, you can say that the unit of density is kg/m3.

OK. That was simple enough. Now how about things with units of length
+ mass? Is this a reasonable physical quantity? The answer is no. You never
get units like this occuring. Length × mass occurs a lot however. The reason
is that physics is ultimately about predicting what’s going on in the real world,
not about fiddling around with a lot of equations. If someone says, I’m five feet
and twenty seconds tall, you’ll think they’re mad. To make a long story short,
adding different units together doesn’t make sense.

Let’s talk about what the units of force are. We’ll see later on that the force
equals mass times acceleration. We’ll also see that acceleration has the units
length/time2 So we have

units of force = units of mass× length/time2 = ML/T 2. (2.2)

We can write this in SI units as kg m/s2. Because this combination occurs so
often, we give it a new name, ”one Newton” or 1 N. A force of 5 kg m/s2 is the
same as a force of 5 N.

2.3 Conversion of units

Here we’ll go through a number of examples of conversion of units.
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2.3.1 Length conversion

Suppose you’re six feet tall and want to know your height in inches. Well, 1 ft
= 12 inches. I’ve used the standard shorthand “ft” for foot (or feet). So 6 ft =
6 x (12 inches) = 72 inches. This is really all there is to converting units.

2.3.2 Speed conversion

Let’s do a slightly more complicated example. Suppose you want to convert
the speed 60 miles/hour into the units ft/s (feet per second). How do you do
that? Well 1 mile = 5280 ft, and 1 hour = 60 minutes = 60 x 60 s. Putting this
together, we have

60 miles/hour = 60
5280 ft

60× 60s
=

5280

60

ft

s
= 88ft/s (2.3)

2.3.3 Density conversion

Another example is the density of water. The density of water at “standard
temperature and pressure”, is 1g/cm3 (i.e. 1 gram/centimeter3). What is the
density of water in SI units, i.e. measured in kg/m3? To figure this out, you need
to realize that one kilo gram = 1000 grams, and 1 meter = 100 centimeters.1

So putting this together means that

1g/cm3 = 1
(1kg/1000)

(m/100)3
= 1000kg/m3 . (2.4)

When you work with lots of equations, one easy way to get the wrong answer
is to mess up with the units. Lets do an example. What is the mass of a sphere
of water of radius 1 cm? Well eq. 2.1 tells us that the mass m = ρV . What is
V ? You might recall that the volume of a sphere is V = 4πr3/3, where here
the radius r = 1cm. So we have

m = ρ
4

3
πr3 (2.5)

So what do we do now? Plug and chug! Take the value of the density ρ =
1000kg/m3 and the radius r = 1cm and plug it in. So what’ll we get?

m = 1000
4

3
π(1)3 = 4189 (2.6)

4189 what??? Is the answer kilograms, grams, or what? It better not be
kilograms because our intuition should tell us that a sphere of water that size
could not be anything like that much mass! What we did was very sloppy and

1One nice thing about SI units is that one can always use a “kilo” (k) prefix to multiply a
unit by 103 or a ”mili” (m) prefix to multiply a unit by 10−3 (even though no-one uses some
combinations such as a kilosecond). Compare this to inch – foot – yard – furlong – mile in
the British system!
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gave us the wrong answer !!. To do this the right way, we need to put in the
units. Mass and length aren’t just numbers, they have units also. So what is
really the correct way to do this is to say

m = (1000kg/m3)× 4

3
π(1 cm)3 = 4189

kg

m3
cm3 (2.7)

Then we need conversion between cm and m which is 1 m = 100 cm. This
gives

m = 4189
kg

(100cm)3
cm3 = 4.189× 10−3kg (2.8)

Alternatively we could have been consistent and have done the whole thing
using SI units. So we would write r = .01m, which is in SI units. So now

m = 1000 kg/m3 × 4

3
π(.01m)3 = 4.189× 10−3kg (2.9)

Notice that the units of m3 cancel out leaving the unit of kg. This is the
correct unit for mass. If instead we had obtained the units kg m2, then we
would have had to have made a mistake some place. This shows the importance
of always checking units.

2.4 Dimensional analysis

Dimensional analysis is a very powerful way of reasoning about problems that
can give order of magnitude estimates for quantities of interest. For example,
if we wanted to get a rough estimate of the mass of the spherical drop of water
in example 2.3.3 then we can get it to within a factor of ten as follows. That’s
good enough for us at present. We’ve decided to wave our hands around a lot.
Why is such an answer useful? Often you’re not even that sure of the size of
the droplet and you just want to know if something is about 103 kg or 10−3 kg.

2.4.1 Density

This is an example that might be so easy that you don’t see the point. Read
this and then the next one. Then if you go back to this example again, and it
might help.

First we want to know what are the important variables in the problem.
There’s the density ρ, which has units M/L3 (mass per length cubed), and also
r radius, which has units of L (length). We want to figure out how the mass
is related to these two quantities. We guess that the mass should equal some
constant times ρpLq. p and q are unknown numbers that we’ll try to determine.
If we are successful in determining them, then we’ll almost have the answer.
You might be wondering why we made this guess. It’ll become clearer as we
work through this example. Unfortunately there’s that pesky constant that we
won’t be able to get, but most of the time such constant don’t differ from unity
by more than a factor of 10.
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OK so how do we determine p and q? We can do so by keeping track of
units. We write

m = constant× ρpLq ∝ ρpLq (2.10)

Here we’ve introduced the proportionality symbol “∝”. This is useful for situ-
ations of this kind when we don’t want to be bothered by constants. The right
hand side has units of (M/L3)pLq and the left hand side has units of M . We
better have the same units on the left and right hand side, which then says that

M = (M/L3)pLq =
Mp

L3p
Lq = MpLq−3p (2.11)

The left hand side M = M1L0. The only way of getting the left and right
hand sides to match is to have p = 1 and 0 = q− 3p. Solving this gives q = 3.

So now we have p and q and so plugging this into Eq. 2.10 gives
m = constant ρr3. Note that Eq. 2.5 is of the same form, but there we
calculated the constant to be 4π/3. So if we just ignore the constant, that is set
it equal to one, then we end up off by roughly a factor 4, which gives the right
answer to within an order of magnitude.

2.4.2 Centripetal acceleration

Later on, we’ll discuss something that you’re all aware of, that when you go
around in a circle, you feel an acceleration. To make things concrete, let’s say
we’re going around a speed v in a circle of radius r. You could be on a merry-
go-round going at a speed of v = 10 ft/s relative to the ground, and at a radius
of 4ft from the center. To get an idea of the acceleration, we need to know its
units. The units of acceleration are L/T 2, that is length over time squared, or in
SI units m/s2. But we want to figure out a formula that relates the magnitude
of the acceleration a to v and r. Let me stress that we don’t expect to get the
exact formula. Our answer will be off, but this is still very useful.

The important thing here is that we expect the acceleration to depend on
only v and r, so then we can write

a = constant× vprq (2.12)

Why? Well, what else could it be? It couldn’t be something like v2 + r3

because this wouldn’t have sensible units!. It really can only be as we guessed,
where p and q are unknown. But if we thought that a depended on something
else, like the distance between the Mars and Jupiter, then we couldn’t write
down this simple form; dimensional analysis wouldn’t be anything like as use-
ful. But fortunately, unless you really believe in astrology, it would seem quite
unlikely that this is the case.

So following the same procedure as we did for density, we can write Eq. 2.12
in terms of the units of all these terms:

L/T 2 = (L/T )pLq (2.13)
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and simplifying this we have

L1T−2 = Lp+qT−p (2.14)

The exponents for L and T on the two sides of the equation must match, so for
T :

1 = p+ q (2.15)

and for L:
−2 = −p (2.16)

So we have that p = 2 and q = −1. So plugging this back into Eq. 2.12 we
finally get

a = constant× v2/r (2.17)

Later on we’ll see that this is the correct answer with constant = 1. Of
course we shouldn’t expect this to constant to be 1. For example, we could have
substited diameter instead of radius in Eq. 2.12, and this wouldn’t have made
any difference to our argument, but then the constant would end up being 2.

You could say ”what’s the point of this, if you don’t know that constant, if
it could be anything?”. Again, usually the constant is going to be around 1.
Maybe it’ll be 12.3, or 0.2. So this then gives you a rough estimate.

But secondly, and more importantly, this tells you about the relative accel-
eration. Suppose you asked what would happen if you doubled the speed? As
an exercise you should be use Eq. 2.17 to see that with any constant you choose
for that formula, the acceleration will go up by a factor of 4. A lot of times,
that’s very useful information to have.

In this example you should be able to see that with almost no physics used,
just the units of quantities and sensible physical assumptions, that you can get
out a lot of valuable stuff!

2.4.3 Turbulence

When liquid or gas flows through a pipe at a high velocity, it is turbulent: the
flow is choppy and irregular, and changes from instant to instant. At lower
velocities, the fluid moves smoothly down the pipe. How fast does the flow have
to be for turbulence to occur? The only quantities that the answer can depend
on are the fluid velocity v, the fluid density ρ, the diameter of the pipe D, and
the viscosity µ of the fluid, which can be shown to have units of kg/m s. When
some function of these four quantities is sufficiently large, i.e. bigger than some
number, turbulence is seen. No-one has been able to calculate what this number
is! But since numbers have no units, we have to find a combination of ρ, v,D
and µ that also has no units. The units of ρvpDqµr are

(M/L3)× (L/T )p × Lq × (M/LT )r = M1+rLp+q−r−3T−p−r. (2.18)

Since the combination has no units, r = −1, p = 1 and q = 1. Thus the
condition for turbulence is that ρvD/µ should be greater than some number,
which is experimentally found to be approximately 2000.
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While there is no way to calculate this number, the discussion about units
already tells us, for example, that if the same fluid is flowing down a pipe of
half the diameter, its speed has to be doubled in order to see turbulence. Such
analyses are very important in aeronautical engineering, where one can test a
small model of an airplane in a wind tunnel at high air velocity, to mimic the
behavior of a full-size airplane flying under normal conditions.
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Chapter 3

Motion in one dimension

In this chapter, we’ll introduce the concepts of velocity and acceleration and
apply them to simple situations. By one dimension, one means motion along a
line, or in one particular direction. Think of a car going down a straight road,
or a person running on a straight track. You could also think of an object being
thrown up vertically in the air and watching it fall. It might seem a bit boring
at first to work strictly in one dimension. Why not study what happens when
a ball is thrown at some other angle besides straight up? Well it’s true that its
motion is more interesting, but it’s also more complicated. One thing that you
should try to learn in this course is that it’s best to start with something simple
and work your way up. We will discuss the more general case of motion in three
dimensions, but in order to understand that, it’s best to understand motion in
one dimension first.

3.1 Definition of velocity

First we’ll define average velocity and use that to understand the notion of
instantaneous velocity

3.1.1 Average velocity

Suppose you’re cruising down the highway and you go 60 miles in 1 hour. Then
your average velocity is 60 mi/hr. Now we are going to go through this more
formally as follows. Say we measure everything along a line from point. That
is we were driving along a straight road and we had set our odometer to zero in
San Jose. Now it reads 15 miles, and we look at our clock and it says that it’s 9
A.M.. Introducing variable names to describe this, our initial position xi equals
15 miles, and our initial time ti equals 9 hours Later on we look at the odometer
and it reads 75 miles, and our clock reads 10 AM. So we can introduce two other
sets of variables to describe this. Our final position xf equals 75 miles, and our
final time tf equals 10 hours.

17
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Why bother to go to all the trouble of inventing four variable names? It
seems like a pretentious way of saying something quite simple. Well the reason
is that physics is much easier dealt with in terms of mathematical equations. If
we can translate everyday happenings into a precise mathematical formulation,
then we’ll see that it’s possible to do pretty amazing things! So just put up with
this for the moment, and later on you’ll see that it is indeed quite useful.

So now we are in a position to define the average velocity in one dimension
v̄. It is the ratio of the change in position xf −xi, to the change in time tf − ti.

v̄ ≡ xf − xi

tf − ti
(3.1)

Often as a shorthand, we’ll write ∆x ≡ xf − xi, and ∆t ≡ tf − ti. So the
Greek letter ∆ can be thought of as meaning ”the change in”. In this way, our
definition of average velocity can be written more succinctly as v̄ = ∆x/∆t.

3.1.2 Instantaneous velocity

Now the idea of average velocity is something that is fairly straightforward, but
the idea of instantaneous velocity is a little trickier. It really requires calculus
to fully appreciate, but hopefully you already know what a derivative is, so this
shouldn’t be too hard.

Suppose the velocity of the car is varying, because for example, you’re in a
traffic jam. You look at the speedometer and it’s varying a lot, all the way from
zero to 60 mph. What is the instantaneous velocity? It is, more or less, what
you read on the speedometer. I’m assuming you’ve got a good speedometer that
isn’t too sluggish and can change its reading quite quickly. Your speedometer
is measuring the the average velocity but one measured over quite a short time,
to ensure that you’re getting an up to date reading of your velocity.

So if you measure the displacement of the car ∆x over a time ∆t, you can
use that to determine the average velocity of the car. What we want is to take
the limit as ∆t goes to zero. More formally, the instantaneous velocity v is
defined as

v = lim
∆t→0

∆x

∆t
(3.2)

Most of the time we’ll be working with instantaneous velocity, so we’ll just
drop the instantaneous, and call the above v the velocity.

To justify that such a limit exists is something that you’ve hopefully had
to grapple with already. For physics problems, this limit does indeed exist and
gives the derivative:

v =
dx

dt
(3.3)

We can go through how this limit works out in the following example.
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Figure 3.1: The curve is a plot of the position x as a function of time t. The
average velocity between ti and tf is the slope of the black straight line. The
instantaneous velocity at ti is the slope of the red line, which is tangent to the
curve at time ti.

Example of a limit

Suppose you know that the position of an object depends on time as x = t2 (here
I’m being naughty and forgetting about units for the moment). Lets calculate
the instantaneous velocity at t = 1.

So in this case ti = 1, and xi = 12 = 1. We’ll want to try different values of
tf and verify that we do appear to converge to a sensible final answer.

Let’s start with tf = ti + 1 = 2, then xf = t2f = 4 so from eq. 3.1 we have,
v̄ over this time interval is

v̄ =
xf − xi

tf − ti
=

4− 1

2− 1
= 3 (3.4)

OK that’s fine, but this is clearly not an infinitesimal interval. Let’s shrink
the interval by 1/2 so that tf = 1 1/2. Then

v̄ =
xf − xi

tf − ti
=

9/4− 1

3/2− 1
= 5/2 (3.5)

If we shrink the interval ∆t even further, so that tf = 1.1 then going through
the same steps gives v̄ = 2.1. If we now try tf = 1.001, then v̄ = 2.001.

It looks pretty clear that as ∆t → zero we’re coming up with an instanta-
neous velocity of 2.

This is what you’d expect since the derivative of t2 is 2t . Evaluating this
at t = 1, we get 2.
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3.1.3 Speed

Speed is defined as the absolute value of the velocity. In other words, If you’re
driving the wrong way down the freeway, then besides it being a really stupid
and dangerous thing to do, your velocity has reversed sign. Your speed could
quite possibly remain unchanged.

When it says the speed limit is 65 mph, you can’t get around it by driving
in the reverse direction. If they had posted a velocity limit instead then this
trick would work.

3.2 Acceleration

Acceleration is another concept that you should have an intuitive feel for. If
you’re accelerating you actually can feel it. The acceleration is the rate of change
of velocity with respect to time. So when you’re at a stop sign and you step
on the gas, you kind of feel pinned to your car seat. If you suddenly step on
the brakes, then you lurch forward. At least that’s the way it appears in the
movies. We’re real safe drivers here.

So now we’ll go through similar steps to our above exposition of velocity,
and as a consequence, I’ll cut down a bit on the verbiage.

3.2.1 Average acceleration

The average acceleration is defines in analogous manner to the average velocity.
It at some time your velocity is 30 ft/s, and a second later its 40 ft/s, then your
average acceleration is 10 ft/s2.

Again, in terms of equations

ā ≡ vf − vi
tf − ti

(3.6)

Here vf is the final velocity measured at time tf and vi is the initial velocity
measured at time ti.

3.2.2 Instantaneous acceleration

OK, I promised to cut out the crap, so here it is. The instantaneous acceleration
is defined as

a = lim
∆t→0

∆v

∆t
=

dv

dt
(3.7)

As with instantaneous velocity, we’ll spare people’s aching ears by referring
to the instantaneous acceleration as just the acceleration.

Now using eq. 3.3 we then see that

a =
dv

dt
=

ddx
dt

dt
=

d2x

dt2
(3.8)

So the acceleration is the second derivative of the position with respect to
time.



3.3. MOTION WITH CONSTANT ACCELERATION 21

3.3 Motion with constant acceleration

There are many important examples where an object experiences constant ac-
celeration, most notably an object in “free fall”. That is, an object that has
been thrown into the air and is not traveling so fast that air resistance becomes
important.

In the case of free fall on the surface of the earth, the acceleration is ap-
proximately −9.8m/s2, or −32ft/s2. This is for objects moving vertically up or
down, so our coordinate x is now in the vertical direction. (Actually we’ll tend
to use y to denote motion in this direction. Note that one can use any symbol
that one pleases, such as ♥, but that would be silly).

We’ll study the case of motion with constant acceleration in some detail,
first in one dimension, and then in two and three dimensions.

3.3.1 Velocity as a function of time and initial conditions

So now we get to see the use of all this math that we’ve been doing! Take the
definition of acceleration eq. 3.7 and turn it around. Notice that now a is a
constant (in time).

So we want to solve this equation for velocity v. v will be some function of
time (because the system is accelerating), and we want to know what it is. So
how do we solve

dv

dt
= a ? (3.9)

Such an equation is a simple example of a differential equation, because it in-
volves a derivative and also an equals sign. That doesn’t help us much in solving
it, but at least we get to impress our friends with all this fancy math terminology.
But to actually solve it isn’t beyond the reaches of the human intellect.

• The above equation says that the derivative of a function of time is a
constant. So what function has a constant derivative? Have you got it
yet?

• Another way of saying it is: what function when differentiated yields a
constant, in other words, what is the anti-derivative of a constant?

From either way of looking at it you get, a straight line

v(t) = at+ C (3.10)

Now I wrote v(t) because I wanted you to notice the the velocity depends on
time, and not say, the color of the socks you’re wearing. You don’t have to write
it this way, you’re perfectly all right if you write it as just v, but then you have
to remember what you’re trying to solve for: how the velocity varies with time.
Now C is an arbitrary constant. It could be anything with the information
provided. So this is a bit strange. We’re saying we don’t know exactly what
the solution to the equation is! The answer has this unknown constant floating
around.
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How can we determine that constant? Well the answer is, with the infor-
mation given, we can’t. In order to determine the constant, we need some
additional piece of information.

A common type of problem is when you’re given the initial value of a quantity
at some time, say t = 0. This is called being given an “initial condition” . For
example, you may say that initially the velocity of the object was 1.2m/s. We’ll
see now that with an initial condition, the constant can be determined and
we have a unique solution to this equation, in other words we have completely
determined its velocity as a function of time.

The strategy here is to apply the initial condition to what we’ve just figured
out, that is eq. 3.10. At t = 0 we’re saying we know that v = v0, some given
initial velocity. So applying this we’ve got v0 = a0+C = C. So now we know
C. It’s just v0! Plugging this into eq. 3.10, we have

v(t) = at+ v0 (3.11)

You should be able to see that this answer makes sense intuitively. At t = 0,
the velocity starts out at v0, as we wanted it to. Then as time goes on, it
increases linearly at a rate a.

Applying an initial condition, like we just did, is an important part of me-
chanics, and more generally the study of differential equations. It might seem
weird at first, but you soon get used to it. The point is that depending on the
initial conditions of a system, you’re going to get different subsequent motion.
If you toss a ball up into the air, then you’re giving it one initial condition. If
you throw it towards the ground, you’re giving it another. What you see the
ball do is different in these two cases, because they have two different initial
conditions.

3.3.2 Position as a function of time.

How do we find out how the position of a object varies with time, when it is
moving under the influence of constant acceleration?

Well we can start by using how the velocity depends on time. How does it?
We just figured it out, it’s Eq. 3.11. So how can we get from v to x? We use
the definition of instantaneous velocity, eq. 3.3. As in the above, we just turn
around this equation, in symbols:

dx

dt
= v(t) = at+ v0 . (3.12)

So now we have a slightly more complicated differential equation to solve.
Following the same line of reasoning as above, we ask: what function has as its
derivative at+ v0? In other words, what is the anti-derivative of at+ v0? You
can answer this question for both the at and the v0 terms separately, and then
just add the answers together. You easily see the correct anti-derivative is

x(t) =
1

2
at2 + v0t+ D . (3.13)
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Again we have some arbitrary constant D that we can’t determine with the
information given. We need yet another initial condition to determine what that
constant is.

So we follow the same steps as above. We say that the position of the object
at t = 0 is given, call it x0. Then at t = 0 eq. 3.13 becomes x0 = 0+0+D = D.
So now we know D. It’s just x0. Plugging this back into eq. 3.13 gives

x(t) =
1

2
at2 + v0t+ x0 . (3.14)

So if you know the initial position, the initial velocity, and the acceleration,
then you can determine the position of the object as a function of time.

3.3.3 Straightforward example

Suppose a camel on a bicycle has a constant acceleration of 1 m/s2. You have a
stop watch and when it passes some point you like to call “go”, the camel has a
velocity of 4m/s. Where is it relative to “go” after 2s, and how fast is it going
at that time?

Don’t look at the solution until you’ve thought about this for a bit.

Solution

Well we know that the answer to this has to do with the formulas we just
derived, so that’s a pretty big hint. Don’t go on until you’ve thought about how
to apply these formulas.

How do you apply these formulas? We first have to translate this word
problem into mathematical problem.

• Identify the relevant pieces of information in the problem. Well most of
what was stated was relevant, the only thing that was really irrelevant
was the fact that the object that was moving was a camel riding a bike.
The answer would of course be the same if it was say a tortoise riding a
moped. We can see that the positional and velocity information in the
problem affects the final result and is therefore relevant, Same with the
time shown on the stop watch.

• Give names to all the relevant variables. Call the position and velocity of
the camel at time t, x and v respectively. x measures the position of the
camel relative to “go”, so that when x = 0, the camel passes go. Also
when the camel passes “go” the stop watch was started. So we identify
this point with t = 0. Note that the position and velocity at t = 0 have
been given: x0 = 0 and v0 = 2m/s.

• Identify what equations describe the physical situation we are analyzing.
We have an object moving with constant acceleration and want to know
its position and velocity at a time t = 2s. We noted above that we also
know its initial position and velocity. Well the correct equations to use
(well errr.... the only equations to use at this point) are eq. 3.11 and 3.14.
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Now we have everything we need to solve this problem. Try to solve it now
if you haven’t managed so far.

With the values of v0, a, and t as given we have

v = (1m/s2)2s+ 4m/s = 6m/s (3.15)

and

x =
1

2
(1m/s2)(2s)2 + (4m/s)2s+ 0 = 2m+ 8m = 10m (3.16)

Note the strategy we used in solving this problem. Even if you found this
example to be really easy, you can learn something from the technique that was
used to solve it. We divided the problem up into several simpler questions that
we could answer immediately. When dealing with more complicated problems,
you should keep your cool and try and do the same thing.

3.3.4 A little less straightforward example

OK, now suppose you have the same bicycling camel but you don’t have a stop
watch. Instead you can see the speedometer on the camel’s bike. The camel
passes “go” at the same initial velocity of 4m/s and its acceleration is still
1 m/s2.

So you notice that at some point the camel is going at 6m/s. At this point,
how far is the camel from “go”?

Hint: look at the final answers in the solution to the last example.

Solution

We saw in the last example that at t = 2s, the velocity of the camel was 6m/s.
That’s exactly the point in time we’re interested in! How lucky! We already
calculated the position at that time. It is x = 10m. That’s all there’s to it.

3.3.5 An even less straightforward example

Well now we won’t be so lucky. The same set-up as the previous example, but
now at some point we notice the camel going at 5m/s. How far is the camel
from “go” now?

Think about this for a while before looking at the solution.

Solution

Hmm, well it looked pretty easy before because we serendipitously knew the
time t when v = 6m/s. But we don’t know it now, so how can we solve the
problem? Maybe we can figure out t when v = 5m/s?

So now we have a sub-problem that’ll help us solve the main one:
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• Given, the initial velocity of a camel, v0 = 4m/s, a constant acceleration
of a = 1m/s2, at what time is the final velocity v = 5m/s?

To solve this we want an equation relating the quantities v, v0, a and t.
Can you find such an equation? Sure, you already used it, its eq. 3.11 .
We just need to solve this for t.

t =
v − v0

a
=

5m/s− 4m/s

1m/s2
= 1s (3.17)

Fine, we solved this sub-problem, now we know t. So we have a problem
just like the first camel example, section 3.3.3, except now we want to know the
position of the camel when the stop watch reads 1s, instead of 2s.

Following the same logic as in the solution to that example (3.3.5),

x =
1

2
(1m/s2)(1s)2 + (4m/s)1s+ 0 = 4.5m (3.18)

3.3.6 Relations between other quantities

The last two examples, in sections 3.3.5 and 3.3.4 posed a different kind of
problem then we considered before. We started off in section 3.3.2 by asking

• given a,x0, v0, and t, what is x?

The last two examples asked the question

• given a,x0, v0, and v, what is x?

Which is an equally legitimate question. Do we want to go through the
same rigmarole as in the last example? It’d be better to find the general formula
relating the above quantities a,x0, v0, v, and x. We almost had that formula but
we blew it, I’m sorry to say. Yes, I’m going to get preachy again and mention
yet another rule that you should always follow, (well maybe not always, but
most of the time).

Do not substitute numerical values into formulas until you’ve got
to the last stage of the problem. Do everything in terms of symbols,
not numbers.

I’ll illustrate that for you with the problem at hand. Eq. 3.17 gave the
general expression relating t to v, v0 and a. We screwed up getting a nice general
formula by foolishly substituting in for the numerical values of quantities, giving
us t = 1s. That wasn’t necessary at all. We could have waited to do the
substitution. Let’s see what happens if we do that now.

Following the same logic we used in that example, the next thing to do was
to substitute t into eq. 3.14. Instead of substituting in 1s let’s substitute what’s
after the second equals sign in eq. 3.17, and keep all other quantities as symbols.

x =
1

2
a(

v − v0
a

)2 + (v0)(
v − v0

a
) + x0 . (3.19)
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This can easily be simplified. It’s just a little algebra. You finally get

v2 − v20 = 2a(x− x0) (3.20)

There we are. A general formula relating a,x0, v0, v, and x! That’s what we
wanted. With this formula, you can solve a lot of problems similar to examples
3.3.4 and 3.3.5 quite simply.

Another reason why doing things in symbols is so important is that it allows
you to check you answers to see if they make sense. Look at eq. 3.20. Check
what happens if a = 0. Well then you see that the speed of the particle doesn’t
change. That sounds correct. How about if x = x0? Yes the initial and final
speeds are the same in that case also. You know in these limits, the answer is
right. Also you can easily check that the units work out. This gives you some
confidence that the formula is indeed correct. If you had instead plugged in
the time as we did in the previous example (3.3.5), you couldn’t check all these
limits and would be far more likely to make some mistake.

It takes a while to get used to solving problems with symbols instead of
numbers. It seems far too abstract for most people at first. You can get over
this problem by using the same approach we did here. First solve the problem
the more comfortable way by plugging in numbers as you go along. But after
that go back, and go through the same steps but this time keep all your symbols.
It’s the same logic in both cases. You’re just replacing a lot of multiplication
and addition with algebraic manipulations.



Chapter 4

Vectors

Vectors aren’t really necessary to understand physics but they’re really cool
and simplify understanding of a lot of problems enormously. Without vectors
mathematical descriptions are much more cumbersome. A vector is something
with both a magnitude and a direction. It is often thought of as an arrow like
so: ր. The length of the arrow is its magnitude, and obviously the direction
that its pointing is the direction (duh). You can define operations on vectors
analogous to the addition of regular (real) numbers. You can add and subtract
vectors, and there are two common ways of multiplying them together.

Vectors are most commonly notated in books by using bold face. A vector
named “A” would be notated A to distinguish it from a regular real number.
Another common way to write vectors is to represent them by placing a little
arrow right over the top of the letter (e.g. ~A).

As I just said, it’s nice to think about a vector as being an arrow, having a
magnitude (the length of the arrow) and a direction. Two vectors (e.g. ւ and
ւ) that have the same length and go in the same direction are equal, even if
they don’t start off at the same point in space, as with the two arrows above.
However they are different if either their magnitudes or directions differ (e.g. ւ
and ր.

From a mathematical point of view, it is good to represent vectors by real
numbers and that’s what we’ll talk about now.

4.1 Representation of vectors in Cartesian coor-

dinates.

The most commonly used method to represent a vector is with Cartesian coor-
dinates. The units can be anything, but to start with, we could just consider the
“displacement vector” which describes the difference in position of two points
in space. You just plonk your vector on top of an x-y grid and read off the
numbers on the x and y axes. Like shown in Fig. 4.1

27



28 CHAPTER 4. VECTORS

0 1 2 3

1

4 5

2

3

4

5

Figure 4.1:

So this (two dimensional) vector, call it A is represented by a pair of num-
bers. The first one is the x component of the vector, Ax, which you get by
reading it off this figure. You can see that it’s 3. The y component, Ay, can
also be read of and is 5.5. So you could write this vector A as (3,5.5). If this
vector was three dimensional (which is more difficult to draw), then it would be
represented by three numbers.

But why did I place the grid the way that I did? Wouldn’t I have been
equally justified in plonking the vector on top of a grid going at some other
angle, like so, as shown in Fig. 4.2?

Sure, that that seems fine too. After all this nothing better about one
orientation rather than another. They’re both equally valid coordinate systems.
But when now I figure out the components of the vector, I see they’re different:
(5.4, 2.3).

Which one is right? They’re both right. You just have to be clear what
you’re doing. Your specifying the components of the vector with respect to a
particular coordinate system. So when you say Ax = 3 , Ay = 5.5, it’s with
respect to a particular coordinate system that we plonked down. Those numbers
are meaningless unless you specify what coordinate system you’re using!

4.1.1 Scalars

When talking about vectors, sometimes it can get confusing because one also
talks about real numbers like 2 , π or e at the same time. When mentioning
good old regular numbers at the same time as vectors, it’s useful to give these
regular numbers a name to distinguish them from vectors. We call them scalars.
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Figure 4.2:

Well, actually there’s a bit more to it than that. I’m being awfully cavalier. To
explain this subtle point, take as an example the length of the vector A above,
so called |A|. Note that when we rotated the coordinate system, |A| didn’t
change. So that’s a scalar. Now if instead you just look at the x component
of a vector, then we saw that this did change. So you wouldn’t want to call
Ax a scalar, though it is just a regular number. You might want to keep this
subtlety in mind, though it probably won’t come up very much here: a scalar
is a number, or a quantity whose value is a number, provided that the number
does not change if we rotate our coordinate system.

4.2 Representation of vectors in polar coordi-

nates.

You can also use polar coordinates to represent a two dimensional vector. You
just specify the angle the vector makes with respect to the x axis. In the case
of the first coordinate system we used, the angle is 56 degrees as shown:

The the x and y components of the vector are also shown. From trigonometry
we can relate the angle of 56 degrees, (call it θ for more generality) to the x and
y components, Ax = 3, and Ay = 5.5:

tan θ =
Ay

Ax
(4.1)

Then you have to talk about the length or “magnitude” of the vector. The
magnitude of the vector can be denoted by the absolute value symbol |A|.
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Sometimes one doesn’t want to write it as |A| because it looks too complicated,
instead one can write it as A (not bold face any more). If you are writing it by

hand, instead of writing | ~A| you’d also write A. So from good old Pythagoras
we have

A =
√

A2
x + A2

y (4.2)

In three dimensions this is just A = A2
x + A2

y + A2
z.

Sometimes this polar representation is a more useful way of understanding a
final answer then by looking at Ax, Ay. You know immediately the magnitude
of the vector, and the direction it’s pointing in. But using x and y components
tends to be the most useful way of wading through intermediate steps of a
problem. We’ll see that operations performed on vectors are easiest done in
terms of these components.

We can go the other way and relate the x and y components of A to A and
θ. Again, it’s just trigonometry:

Ax = A cos θ , Ay = A sin θ . (4.3)

4.3 Examples of vectors and scalars

We already briefly mentioned an example of one type of vector, the displacement
vector, which describes the difference the relative position of two points in space,
but the magnitude and direction.

Another example, which will talk about extensively in the next chapter is
the velocity vector. The direction of the vector tells you the direction an object
is moving, and the magnitude, its speed.
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A chapter after that, we’ll start discussing forces. These are also vectors.
The direction of a force acting on an object determines in what direction the
force is pushing the object. Its magnitude tells you hard its being pushed.

An example of a scalar, is the speed of an object, like a bird or an electric
cabbage. The energy of an object, something we’ll talk about even later, is
also a scalar. It doesn’t matter what coordinate system you use to measure the
energy. You always get the same answer.

I’m giving you lots of examples of things which are vectors. Well perhaps it’d
be useful to give an example something that is not. OK well here is a completely
random example. The x component is the number of socks that I am currently
wearing (1), and the y component is the time showing on my watch (11:11PM).
This is not a vector because if I use a different coordinate system, I don’t find
that these two numbers change. They should if this was a vector as we saw in
section 4.1.

4.4 Addition of vectors

Pictorially vector addition is pretty straightforward. If you want to add the
vectors A and B, you just take the second vector, represented by an arrow, and
translate it so that it’s tail is at the head of the first vector. A + B is just
a vector that starts at the tail of the first arrow and goes to the head of the
second, so the whole thing, vectors A, B, and A+B, form a triangle, as shown
in Fig. 4.4:

Now the nice thing about this definition is that it’s easily seen that A +
B = B+A, and also the rule for adding in terms of components couldn’t be
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simpler. Look at the x components for example. What is the x component of
the vector A

¯
+B?. Its just the addition of the x components of the two vectors,

Ax + Bx. This is easily seen by the following picture. We just show “project”
the components of A, B, and A+B down close to the x - axis. You see there’s
a of length Ax, one of length Bx, and one which is the x component of A +B
which I labeled (A+B)x. You see from that picture that the total length of
the red and green lines, is the length of the blue line. That’s what we wanted
to show. The same holds true in the y direction, so that the y component of
A+B is just Ay +By.

So vectors add nicely in terms of their x and y components. It’s much messier
in terms of the vectors’ polar representation.

4.5 Multiplying vectors by real numbers

One would also like to have a good definition of multiplication. Well, there are
a couple of common ways of multiplying a vector by a vector, but let’s first ask
how to multiply a vector such as A by a real number. For example what would
be a good definition of 2A? Well you’d think it’d be good if A+A = 2A.
I think it’s good too, so let’s say that. Then by the procedure for addition
discussed above, we see that we’re taking one vector and adding an identical
copy of it to itself, so the head of the first is at the tail of the second (I hope
these vectors don’t smell). This gives a vector going in the same direction but
with twice the magnitude.

So in general that’s what multiplication of a real number r by a vector A
is going to do. It’ll give us something going in the same direction with r times
its original magnitude. In terms of components rA has x component rAx and
y component rAy.

If r equals -1, then the resultant vector points in the opposite direction. For
example if A looks like ւ, then −A = ր.

4.6 Subtracting vectors

From this it can be seen how to subtract to vectors. You just write A − B =
A + −B. In terms of components, the x component of A −B is Ax − Bx and
similarly for the y component.

4.7 Unit vectors

Sometimes it’ll be convenient to deal with vectors that always have a magnitude
of 1 but can have any direction. Such vectors are called “unit vectors”. So take
again our often used vector A. If we want to make it into a unit vector, we
have to construct something with the same direction but a magnitude of 1.
We typically but silly little party hats on the top of unit vectors to make it
clear to everyone that these are unit vectors. How the party hat notation got
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started beats me, but it does work out pretty nicely. Anyway getting back to
the problem at hand, we’d call this unit vector Â. To actually write down a
formula for Â in terms of A isn’t too tough. Just write

Â = A/|A| . (4.4)

The right hand side means the vectorAmultiplied by the real number 1/|A|.
Let’s check that this is correct. First of all, does it have the right magnitude?
From the definition of multiplication above, when we multiply the vector A by
a real number number, in this case 1/|A|, the resulting vector has magnitude of
1/|A| × |A| = 1. That’s correct. How about the direction? That’s right too,
because when you multiply a vector by any nonzero number, it also points in
the same direction as the original vector.

So this indeed is the right expression for Â.

4.8 i, j and k

There are three particularly useful unit vectors often called either î, ĵ, and k̂
or x̂, ŷ, and ẑ depending on what book you read. When you plonk down your
coordinate system, the vector î points along the direction of the x axis, and ĵ
points along the direction of the y axis. Similarly for k̂ and the z axis. And you
already know because of the little hats that these are unit vectors. That’s all
to these cute little vectors. Why are they useful? Well it’s mostly a notational
thing. Suppose I want to write the vector A in terms of its components. Then
using î and ĵ you can write (in two dimensions)

A = Axî+Ay ĵ (4.5)

Why is this right? Well because Axî is a vector kind of like → and Ay ĵ like
↑, so when you add them together you get the original vector A. Of course in
three dimensions the equivalent formula is A = Axî+Ay ĵ +Az k̂.

So this is a very convenient way of representing a vector in terms of its
components.

4.9 Scalar product

As I said before, there are two ways of multiplying vectors together that make
sense, the scalar product and the cross product. We’ll postpone the discussion
of cross products until a time closer to when we’ll need them which will be in a
moon or two from now.

The scalar product is also referred to as the dot product. It takes two vectors,
sayA andB and multiplies them together forming a scalar. Scalars were defined
above in section 4.1.1. This is often denoted by A ·B.

It is defined as follows:

A ·B ≡ AxBx +AyBy +AzBz. (4.6)
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How do we know that this is a scalar? Well, the square of the magnitude of any
vector is a scalar. Therefore

|A+B|2−|A|2−|B|2 = [(Ax+Bx)
2+(Ay+By)

2+(Az+Bz)
2]−[A2

x+A2
y+A2

z]−[B2
x+B2

y+B2
z ]

(4.7)
is a scalar too. Expanding out the right hand side, we obtain twice A · B as
defined in Eq.(4.6).

Since A ·B is a scalar, we can calculate its value in any coordinate system.
In particular, if the x- axis is lined up with A, we have A ·B = AxBx = |A|Bx,
i.e. the product of |A| and the projection of B on A. (Similarly, A ·B is also
the product of |B| and the projection of A on B.) From simple trigonometry,
the projection of B on A is the magnitude |B| multiplied by the cosine of the
angle between A and B:

A ·B ≡ |A||B| cos θ (4.8)

where θ is the angle between the two vectors. In particular, this means that
î · ĵ = 0 and so on, because the angle between the two unit vectors is 90 degrees,
and that î · î = |̂i|2 = 1, and likewise for ĵ · ĵ and k̂ · k̂.

This definition of the scalar product looks much nicer, involving simple ge-
ometrical (ok, trigonometrical) concepts. But the definition is Eq.(4.6) is often
easier to work with, as we will now see.

4.9.1 Example: methane

In methane you have four hydrogen atoms bonded to a carbon atom. The four
hydrogen atoms form the corner of a tetrahedron. What is the angle between
different hydrogen atoms?

In Fig. 4.5 you see that the atoms of hydrogen can be put at corners of a
cube of width 2. The carbon atom goes in the middle at coordinate (1,1,1). So
we want to determine the angle θ.

We consider just two of these red bonds in the figure on the right, and calcu-
late what displacement vectors these correspond to. They are A ≡ (−1,−1,−1)
and B ≡ (1, 1,−1).
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To calculate the angle between these two vectors we just use the definition
of dot product:

A ·B = |A||B| cos θ =
√
3
√
3 cos θ (4.9)

But we also know how to calculate the dot product by multiplying out the
components. So A ·B = (−1)(1) + (−1)(1) + (−1)(−1) = − 1.

Putting these two things together we have cos θ = −1/3, or θ = 109.47
degrees.
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Chapter 5

Motion in two and three

dimensions

Now that we’ve learned about motion in one dimensions and about vectors,
we can combine these ideas to understand motion in more than one dimension.
We’ll apply this to motion of projectiles. The name projectiles does not nec-
essarily simply that you’re dealing with some ghastly military device such as a
cannon ball. It’s just a general term, to describe anything moving freely through
the air, such as a piano.

So we’ll follow much the same path we did for motion in one dimension,
defining velocity and acceleration in higher dimension.

5.1 Definition of velocity

First we’ll define average velocity and use that to understand the notion of
instantaneous velocity

5.1.1 The average velocity

Suppose you’re a camel on a large flat plane, and start out 1 mile east of Tim-
buktu and 2 miles north. You trot for an hour and then find that you’re 4 miles
east and 6 miles north. You’re average velocity in the west-east direction is (4-1)
miles per hour which equals 3 miles per hour. Your average velocity in the south-
north direction is (6-2) miles per hour which equals 4 miles per hour. This is your
average velocity. In terms of vectors, you could define an x-y coordinate system
with its origin in Timbuktu oriented so that the x axis was west-east. Then you
could write the average velocity in vector form as v̄ = (3̂i + 4ĵ) mi/hr. The
speed of the camel is then just |v̄| =

√
32 + 42 mi/hr = 5 mi/hr.

More formally we can denote the final position of the camel by the vector

37
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rf and the initial position by the vector ri. Then in analogy to eq. 3.1 we have

v̄ ≡ rf − ri
tf − ti

=
∆r

∆t
(5.1)

We can write this in terms of components as

v̄ =
∆x

∆t
î+

∆y

∆t
ĵ (5.2)

5.1.2 The instantaneous velocity

Now we can define instantaneous velocity in analogy to the derivative definition
in one dimension eq. 3.3. So we have

v ≡ lim
∆t→0

∆r

∆t
=

dr

dt
(5.3)

Writing this in components gives

v =
dx

dt
î+

dy

dt
ĵ = vxî + vy ĵ (5.4)

Here the subscripts x and y on the velocity denote the components in those
respective directions.

So in words, the definition of the velocity vector is fairly easy to see. It
just says to get the x-component of the velocity, you measure the rate the x-
component of position changes in time. That’s what we called vx. The same
idea holds for all the other components.

Again, these are just definitions. They don’t contain any physics. We’ll see
that physical laws are nicely expressed in terms of these definitions and that’s
why we’re defining them the way we are.

5.2 Definition of acceleration

This is very similar to what we just did with the velocity. So not to get too
boring, I’ll simply write write down the appropriate definitions:

5.2.1 Average acceleration

The average acceleration from initial time ti to final time tf depends on the
initial and final velocities vi and vf . as

ā ≡ vf − vi

tf − ti
. (5.5)
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5.2.2 Instantaneous acceleration

The instantaneous acceleration is also easily generalized from the one dimen-
sional definition, eq. 3.7:

a =
dv

dt
=

ddr
dt

dt
=

d2r

dt2
. (5.6)

You’re probably getting definitioned out, so we’ll now go on to an application
of how to use these definitions.

5.3 Circular motion

Suppose a centipede is bicycling around a circular track at a constant speed.
We want to be able to describe the position, velocity and acceleration of this
noble creature as a function of time. We’ll call the radius of the track R and
the the speed of the centipede v.

The angle θ varies linearly with time so we can say that θ = ωt where ω
is a constant. It’s often referred to as the angular velocity since its the rate an
angle changes with time. In the present example it is just some constant with
dimensions of inverse time.

So now we can describe the position of the centipede in terms of its x and
y components as seen in green in the figure. A little trigonometry gives the
x = R cos θ and y = R sin θ. So substituting θ = ωt and expressing the
result in terms of vectors:

r = R(cos(ωt)̂i+ sin(ωt)ĵ) (5.7)
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It is important to note that we are measuring θ in radians here; it is only
in radians that we can use standard results from differential calculus such as
d(sinθ)/dθ = cos θ. Therefore ω is measured in radians per second. (Actually,
since angles are related to the ratios of lengths, the radian has no units, and the
unit for ω is s−1.)

Good, now we have a well defined mathematical expression for the position
of the centipede as a function of time. We can now differentiate it once to obtain
the velocity

v = Rω(− sin(ωt)̂i+ cos(ωt)ĵ) (5.8)

So what does this say about the speed? We know how to take the magnitude
of a vector right? Remember Pythagaros? (Did you know he worshiped beans?)
So we have

|v| = Rω

√

sin2(ωt) + cos2(ωt) = Rω (5.9)

So v = ωR . So that tells us how to relate this mysterious ω to v. Now we
can differentiate the velocity again getting

a = −Rω2(cos(ωt)̂i+ sin(ωt)ĵ) (5.10)

But notice this is the same as a = − ω2r (see eq. 5.7). That says that
the acceleration points in the opposite direction to the radius vector r. The
acceleration is pointing towards the center of the circle. Its magnitude is just
a = Rω2. But from eq. 5.9 this just says:

a = v2/R (5.11)

This is called the centripetal acceleration.

5.3.1 Question

Beethoven asks:

• I thought if the velocity of an object was constant, it had no acceleration.
Doesn’t that mean that the centripetal acceleration of the centipede, or
the centipedal acceleration, is zero?

Think about this before you read the answer!

Answer:

Well the flaw in this line of reasoning is that Beethoven has stupidly misunder-
stood vectors. Look, if the velocity of an object is constant, it has no accelera-
tion. But the velocity of this centipede is not constant! The speed is constant
but its direction keeps changing. Again its important to distinguish between
vectors and scalars. Velocity is a vector, it has a magnitude and a direction.
You can’t blame Beethoven for getting this wrong, he’s quite busy decomposing.



5.4. MOTION WITH CONSTANT ACCELERATION 41

5.4 Motion with constant acceleration

Now we come to the problem of how something falls through the air. Not very
happily if it we’re talking about a camel. So let’s talk about something else
instead. What is the position of a baseball as a function of time? What is its
velocity?

Free fall is an example of motion with constant acceleration. We already
dealt with this in one dimension but things look a lot more exciting in two
dimensions. Baseball is not an exciting sport in one dimension, but in three
dimensions it seems to have a mesmerizing effect on certain people.

In the case of free fall, the acceleration vector points vertically downward.
Again, its value has a magnitude of about 9.81m/s2.

We can follow the same line of reasoning we did in one dimension. Everything
is the same except that now we have vectors. So we can march through all the
same steps, and come up with a very similar set of equations. Eq. 3.11 becomes

v(t) = at+ v0 (5.12)

Here v0 is the initial velocity of an object at t = 0. To get the position
vector r as a function of time is equally easy to generalize. Instead of eq. 3.14
we have

r(t) =
1

2
at2 + v0t+ r0 . (5.13)

Here r0 is the initial position vector of the object.

5.4.1 Application to free fall

In the case of free fall, we can take our x axis to be in the horizontal direction
and the y axis to be in the vertically up. The acceleration of gravity is then
a = −9.81ĵm/s2 Instead of writing 9.81, let’s just call it g, so a = −gĵ. We
can write down Eqs. 5.12 and 5.13 in component form. Again we’ll follow the
standard notation of using subscripts x and y to denote the components of a
vector quantity, so

vx = v0x , vy = − gt+ v0y , (5.14)

Note that the x component of the velocity is constant, which it should be
since there’s no acceleration in that direction.

Now for position:
x(t) = v0xt + x0 (5.15)

and

y(t) = − 1

2
gt2 + v0yt + y0 (5.16)

This says that motion of an object in free fall has its x and y components
completely decoupled. That is they’re independent of each other. If you change
v0x it doesn’t affect the y motion at all. The motion in the x direction is that of
an object going at a constant velocity. The motion in the y direction is exactly
the same equation as in one dimension for a particle in free fall. By combining
these two components, you get the overall motion.
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The shape of the trajectory

So now we know how the position of an object in free fall depends on time. But
what if we want to know the shape of arc drawn out by the object? We want
to know how y depends on x. Let’s take the initial position of the object to be
at the origin r0 = 0. Then we just eliminate time in eqs. 5.15 and 5.16. So
first solve for time in eq. 5.15, that gives t = x/v0x. Substitute this into 5.16
and we get:

y = −1

2

g

v20x
x2 +

v0y
v0x

x (5.17)

This is the equation of a parabola. A stream of water, such as produced by a
garden hose, or a fountain, gives us nice conformation of these parabolic shapes.

The range of a projectile

Now suppose that we kick a ball on the ground up into the air with some initial
velocity. How far away does it land? Again take the initial position to be at the
origin of our coordinate system. To find where it lands we ask when does it’s
y component equal zero. Setting the left hand side of eq. 5.17 to zero, we can
solve for x, giving where the ball will land. We’ll call this point the “range” R.
It is then R = 2v0yv0x/g.

Often we want to express the initial velocity in terms of its polar represent
ion (see 4.2). So v0x = v0 cos θ and v0y = v0 sin θ. Using the trigonometric
identity sin(2θ) = 2 sin(θ) cos(θ) we can rewrite the range as

R =
v20
g

sin(2θ) (5.18)

Now you might suspect that some mistake could have crept into this deriva-
tion. How can you tell if it seems reasonable? Well first check the units. Yep
they’re right. OK, now lets look at various limiting cases. Take θ to be zero.
The range is zero. That makes sense because if you kick a ball from the ground
level in the horizontal direction, it doesn’t fly through the air at all. It hits the
ground immediately. OK, how about when θ is 90 degrees? Well you get zero
also. That seems right too because in that case it’s going straight up, and it’s
liable smack you on the way down if you don’t get out of the way.

If you maximize the range over all angles you get that it’s largest at 45
degrees.

The maximum height of a projectile

How do you find the maximum height of a projectile? Well there are a few ways
you could go about it. You could figure it out from eq. 5.17, but let’s instead
do it from eq. 5.14. At the maximum height, the y component of the velocity is
zero. So we can solve for tm, the time when this happens. It’s just tm = v0y/g.
Now plug this into eq. 5.16 to get the maximum height, again with r0 = 0:

ym = − 1

2
g
v0y
g

2
+ v0y

v0y
g

=
1

2
v20y/g (5.19)
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5.4.2 Example: The Monkey and the Evil Emperor

Well I don’t really know what to call this example. In my day, it was called the
monkey and the hunter. It had to do with a hunter shooting a monkey. Nowa-
days people have come up with some pretty PC alternatives, like the monkey
and the game warden. Holy mother of mercy, this is just some stupid totally
unrealistic physics example for goodness sake, but it doesn’t stop the publishers
from getting nervous about getting sued! The monkey is an endangered species
and is being protected from impending doom by being shot with a tranquilizer
so as to be relocated in a more salubrious environment. Sure, sure, sounds
pretty lame. Perhaps we could resuscitate the idea of the monkey getting shot
by saying it was carrying ebola and was about to cause the deaths of many
many other monkeys. But then we might have to add a trigger warning and tell
the reader that they need to go to their safe space afterwards and do meditation
exercises etc. I know, how about if this was actually a toy monkey being shot
by another toy, the evil emperor Zurg? Yah, that sounds good, we’ll call this
shooter “Z”.

OK, so Z is in the jungle and spies the monkey dangling from the branch
of a (plastic) tree laughing at Z. The monkey is a clever little creature, and Z
has quite a slow gun (it’s child safe). Or it could even be a blow gun if Z was
a native of the jungle and was simply interested in eating the monkey as it was
a traditional cultural practice. So the instant the trigger is pulled, the monkey
drops from the branch, in free fall towards the ground.

So the question is, where should Z aim? Above, below, or at that laughing
monkey?

Solution

• Identify the relevant pieces of information in the problem. The initial
positions and velocities of the monkey and Z are relevant. We’re interested
in whether the projectile and monkey collide. That is, is there a time when
the coordinates of the monkey equal the coordinates of the projectile? So
the coordinates as a function of time are also relevant.

• Give names to all the relevant variables. Place Z at the origin. It’s always
a good idea to make the simplest possible choice of coordinate system.
Call the initial position of the monkey r0M . Call The initial velocity of
the projectile v0p. The initial velocity of the monkey is zero, since it’s
dropping from rest. Call the position vectors of the monkey and Z at a
time t, rM and rp respectively.

• Identify what equations describe the physical situation we are analyzing.
Both the projectile and the monkey are in free fall so we can use eq. 5.13
to describe both of them.

The strategy we’ll take to solve this problem is to write down the two equa-
tions that describe the coordinates of the monkey and projectile and then set
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then equal. We set the coordinates equal because that means the the projectile
and the monkey have collided. This will tell us what condition v0p must satisfy
in order to hit the monkey.

OK, so let’s write down the two equations:

rM =
1

2
at2 + r0M (5.20)

and

rp =
1

2
at2 + v0pt (5.21)

Now let’s set these equations equal. Notice that the 1
2at

2 terms cancel. This
means that the acceleration (i.e. gravity) cancels out completely. So at this
point there are two ways to proceed:

1. Well if gravity doesn’t matter, just take it to be zero from the beginning.
The monkey could be in deep space where there is no gravity (it’s actually
plastic). If it tries to drop now, it will discover to its dismay, that it’s not
dropping. So if Zurg aims directly at the monkey, he’ll be bound to hit it!

2. Let’s look at the equation we get: r0M = v0pt. That says that the
vectors r0M and v0pt have the same direction. So if Z wants to hit the
monkey, the gun should be pointed directly at it.

Either way you see that Z will hit the monkey by aiming directly at it,
despite the fact that it is falling. The point is that the decrease in height due
to gravity is exactly the same for both objects, 1

2at
2, despite the fact the bullet

is going much faster than the monkey. So gravity is irrelevant to the relative
position of two objects in free fall.

5.5 Motion in different reference frames

Suppose you have a bear that is running about inside a moving train. You’re
trapped on board the train watching the bear quite intently. You monitor
the bear in from a coordinate system on the train. Call the position vector
as seen from this coordinate system rbt, that is the coordinates of the bear
relative to the train. Call the coordinates of the train seen from a coordinate
system on the ground rtg. A person on the ground wants to know what are the
bear’s coordinates seen in the reference frame on the ground, rbg. How can we
determine what this is? We can see all this pictorially in Fig. 5.2 below.

From the figure we see the following relation between the above vectors:

rbg = rbt + rtg . (5.22)

Differentiating the above formula with respect to time, we see the velocities
are related the same way:

vbg = vbt + vtg . (5.23)
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Figure 5.2:

So to get the velocity of the bear as seen from the ground, you add up the
velocity of the train to the velocity of the bear relative to the train.

Differentiating again, one sees that the relation between the accelerations is

abg = abt + atg . (5.24)

So if the train is traveling at constant velocity, the acceleration of train is
zero. That means the acceleration of the bear as seen from the ground and as
seen from the train are identical.

5.5.1 Cycloidal motion

Suppose you have a reflector mounted right at the rim of a bicycle wheel. If you
hold the wheel up in the air and spin it, the reflector traces out a circular path.
The equation describing the position is as a function of time is give by eq. 5.7.
But when a camel is riding the bicycle, the wheel is on the ground so that the
center of the wheel is moving. We’ll see in a month or so that the velocity of the
center of the wheel is −Rωî. That implies that the the position of the center
of the wheel as a function of time is rc = − Rωt̂i. So from equation 5.22 we
have that the position of this reflector relative to the ground is the sum of two
terms. The position of the reflector relative to the center of the wheel, plus the
position of the center of the wheel relative to the ground:

r = R((cos(ωt)− ωt)̂i+ sin(ωt)ĵ) (5.25)

This traces out a “cycloid” as shown in the Fig. 5.3. Notice the series of
cusps that occur when the reflector is close to the ground. When you look at a
bicyclist at night, if they’re being good and have reflectors on their wheels, you
should be able to see these cycloidal trajectories.
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Figure 5.3:



Chapter 6

Forces

6.1 Basic ideas

Now we actually come to the first bit of real physics. You see, what we’ve done
up to now has been entirely math: vectors, and problems involving derivatives.
We didn’t posit any laws of nature, just what happens if say a particle has a con-
stant acceleration. But constant acceleration isn’t a general law of physics. It’s
an approximation to what happens when quite large heavy objects are thrown
close to the surface of the earth. So now we’ll see how physics really works and
discover the amazing predictive power of what is known as “Newtonian mechan-
ics”. By the way, we shouldn’t be too quick to attribute all of this to Sir Isaac.
He was a brilliant man but history has a way of burying the names of many
worthy people, for example Robert Hooke, who probably has a lot more to do
with the invention of mechanics than most physics textbooks will admit.

So what we’ll be working with are “forces”. These have the units of mass
times acceleration. Forces are vectors. That’s crucial to remember. Failure to
do so will likely result in wrong answers. Many forces act on a single object.
One obvious example is the force of gravity. It’s what keeps pushing you down
so you don’t accidentally fly off into outer-space. But what keeps you from
being pushed down to the center of the earth? (Which has a habit of being
rather unpleasant, even at this time of year.) Well if you’re sitting down, then
the chair is pushing up against your tushy. If you’re standing up, the ground
pushes up against your feet. If you have a dog, then that dog might be pulling
at your pants. This also results in a force. So there are all these forces acting
on a single object. Some pushing left, others right, some up, some down, some
sideways. You get the idea. What’s a poor object to do?

Well assuming your object is a point, then we know what to do. Unfortu-
nately this is not very likely in my case seeing all the twinkies I’ve been eating.
But no matter, even if I wasn’t a point, but extremely rigid, then we can also
say what to do about all these forces. There’s a special point in an object called
the center of mass, that we’ll discuss a bit later. And this point acts in a very

47
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simple way, sort of like all the mass has been concentrated to that location.
So when we talk about an extended object, like a block, we’ll be thinking of it
mainly as a single point and the particular location of that point turns out the
be this so-called center of mass.

The upshot of all this is that to get the motion of the object ( or more
correctly its center of mass) what’s important is the net force acting on the
object. By net force I mean you add up all the force vectors acting on the
object. That’s your net force.

6.2 Newton’s Laws

So now what we want to do is ask how do the forces acting on an object relate
to its motion? Well that was a tricky business for a few millennia. The presence
of air resistance and other frictional forces hid the fundamental physics of the
situation. So instead of going through the history, we’ll just say what the answer
is without too much justification, the justification being that it works really well.
But bear in mind that it took the human race a long time to figure this out.
So one’s first guess is that the bigger the force, the bigger the velocity. That’s
not quite right. You see in outer space, you can have a spaceship going at very
high velocity relative to the earth, but hardly any forces acting on it. The force
doesn’t relate directly to the velocity, but to its derivative: the acceleration.

Scientists, by which I mean just logical and critical people, will break down
this task that we’re embarking on, and try to understand what we’re trying
to accomplish in minute detail. So when we say we’d like to see if there’s a
relationship between force and acceleration, they’d naturally ask what happens
if the force is zero:

• “But wait a second! You think you can find a law relating the force acting
on an object to its acceleration? If you believe that, do I have a bridge
for you! Oh come on, I can show you two cases where you have the same
forces acting on the objects, but their motion is different. Let me explain
why this is an ill defined quest:

– Assume you have a ball in outer space inside a spaceship, no grav-
ity. [This sort of reasoning is called doing a gedanken experiment.]
There’s no force acting on the ball so it will just be floating in the
ship, cruising along at a constant velocity, no acceleration.

– Or will it?. Suppose you turn on the thrusters on your ship. Now
if you stand inside the ship and look at the ball, you’ll see the ball
accelerating towards the back of the ship where the thrusters are.
You haven’t applied any force and now it’s accelerating.

So with zero force applied, depending on the state of the spaceship, you’ll
either see acceleration, or you won’t. Therefore it appears that there is
no definite relationship between force and acceleration”.
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Hmm..., that sounds like a good point! So to salvage our line of reasoning,
and to find a relationship between force and acceleration, we’ll have to decree
that we’re not allowed to have the thrusters on when we do an experiment.
That would be considered a non-inertial reference frame. So would a reference
frame inside a car that’s turning a curve. We want to only consider this force–
acceleration question in an inertial reference frame. (Actually Albert Einstein
would have used that terminology). And operationally, how do you know you’re
in an inertial frame? Well you know you’re in one when you see that the ball
isn’t accelerating when no forces act on it. It’ll just move at a constant velocity
(or won’t move at all).

To make this precise, we’ll make this a law, Newton’s first law. But note
this isn’t so much of a law, as it is a choice of reference frame. So Newton’s first
law says, more or less:

• The next two laws are only true in what’ll be called an inertial
reference frame. In such a reference frame, if no forces are acting
on an object, it’ll just move at constant velocity.

So how about Newton’s two other laws? The second law says that the
acceleration of an object is proportional to the net force acting on an object.
Proportional? That’s not very precise. Well the coefficient of proportionality
depends on the mass of the object as follows.

The more massive, the less the object responds to a force. The idea of mass
is really related to this second law. If you have two objects that are acted on by
the same force, say that one accelerates at 1m/s2 and the second one at 2m/s2,
then the first one is twice the mass of the second. In more generality, one could
say that the ratio of their accelerations in inversely proportional to the ratio of
their masses. Using this idea of mass, we can write down Newton’s second law:

a =
F

m
(6.1)

Where a is the acceleration of the object, F the net force acting on the object,
and m is its mass.

So far we’ve seen that Newton’s first law isn’t so much a law, as it is a choice
of reference frame. The second law, would seem pretty intuitive if you lived in
outer space with no air resistance, that the acceleration is proportional to the
net force on an object.

Now how about the third law? It says that forces always come in pairs. They
are equal in magnitude but opposite in direction. This is a bit counterintuitive.
Let’s illustrate the strangeness of this with the example of a humble banana
and the Earth. While the banana is accelerating towards the Earth, it has a
force acting on it due to the Earth’s gravitational field. Call this FEB . There
is another force however that isn’t so obvious. Its the force the banana exerts
on the Earth. Call this FBE . Well the Earth is much bigger so it’s natural to
think that the first force is much bigger than the second, but no! The two forces
have same magnitude and opposite direction, in equations, FEB = − FBE .
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It seems confusing to think that such a small object like a banana could be as
strong in this respect, as the Earth. But hey, that’s the way it is. It turns out
that Newton’s third law is related to conservation of momentum, which in turn
is a consequence of the fact that the laws of physics are independent of location.
And zillions of experiments bear out that this is indeed the case. So despite the
counterintuitive feeling you might get, us scientists are quite confident that it’s
true (at least for mechanics that we’re studying here).

You might have heard the third law stated something like this: For every
action there is an equal and opposite reaction. So one of the forces is
called an action and the other is called a reaction. Thus these two forces form an
action-reaction pair. All this is just terminology you might come across googling
for physics problems, but these are just fancy words to describe what we just
discussed.

Another example of force pairs are those between your feet and the ground.
As I said earlier, there’s a force the ground exerts on your feet. And there is
another force due to your feet that act on the ground. You might think that
in some circumstances, these to forces wouldn’t be equal. For example, in an
earthquake. The ground is shaking around in this case, so for the same reasons
that we discussed with the spaceship, maybe this makes this law invalid because
our feet are in a non-inertial reference frame. But don’t worry, it still works just
fine, otherwise it wouldn’t be all that useful.

But there is a well known paradox that is quite instructive and you should
try to think about: A horse starts to pull a cart at rest and exerts a force F on
it. By the third law, the cart exerts a force equal and opposite, of −F on the
horse. So the total force on the horse-cart system is F − F = 0. Since there is
no net force, the cart cannot move! But we know from experience that horses
do pull carts with some considerable degree of success. So doesn’t this mean
that Newton’s third law is for the birds?

Most students that hear this paradox often come up with reasons why the
horse does successfully move the cart, and most of them put the cart before
the horse by violating Newton’s third law. But really it isn’t violated. The
resolution is like this: The acceleration of an object, say the cart, is determined
by the net force acting on it. The pair of forces: [horse-on-cart, cart-on-horse]
do not both act on the same object. The only one acting on the cart is the
first one: the force that the horse exerts on the cart. For example, to find out if
you’re going to be accelerated, you don’t include the force of the planet Neptune
on Jupiter (hmm... how about Uranus?). In any case, getting back to the cart,
the other force in the pair: cart-on-horse, is not a force acting on the cart: we
don’t include it in figuring out the net force on the cart. So we don’t sum both
forces in the pair together, since they’re acting on different objects. There will
be a net nonzero force acting on the cart, and therefore it will accelerate. So
physics really isn’t quite as silly as it might first seem.
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6.3 The force of gravity

Unlike the two forces that were talking above, the force of gravity provides a
clear example of “action at a distance”. Two objects don’t need to be in contact
to attract or repel each other. Try having a garlic burger if you want to see how
this works.

If we take a banana of massm and drop it, it’ll accelerate with an acceleration
of g pointing down. It’s the only force acting on the banana so Newton’s second
law says that the force of gravity is f = mg pointing down.

6.3.1 Example: Your weight

So how big is the force of gravity acting on you? Well how much do you weigh?
The answers are the same! To see this, step up onto a scale. If you happen to
look like a robot, you’d have the diagram of Fig 6.1:

you on
earth

earth
on you

you on
scale

scale
on you

Figure 6.1:

The red arrows indicate the forces acting on you. They are the force of
gravity, and the force the scale exerts on you. The force the scale exerts on you
is an example of a “normal force”. The blue arrows indicate forces you exert on
everything else. So at this point it is always a good idea to consider only the
forces that act on one object at a time. So lets consider the red arrows first. We
want the sum of these two forces to be zero because you are not accelerating.
Therefore the force of gravity FG plus the force of the scale on you FSY has
to be zero, i.e. Fnet = ma = m0 = 0. This means they must have the same
magnitude. So |FSY | = mg. Now what about the force you exert on the scale,
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FY S? By the third law, that has the same magnitude as FSY . So the scale
registers a weight of mg.

6.3.2 Example: Weights in elevators

Now what happens if you weight yourself in an elevator? Suppose the elevator
is accelerating with an acceleration of aĵ vertically upward?

This will modify the last example. Now the net force acting on you, which is
the force of gravity FG plus the force of the scale on you FSY should no longer
be zero. From the second law we have

Fnet = FG + FSY = ma (6.2)

The force of gravity is −mgĵ, so solving for FSY , we have

FSY = m(g + a)ĵ (6.3)

And now the rest of the argument is the same as the previous example.
What’s the force you exert on the scale, FY S? By the third law, that has the
same magnitude as FSY . So the scale registers a weight of m(g + a).

So if the elevator is accelerating upward, the scale weighs more. If the
elevator has a downwards acceleration, then you weigh less.

Your mass doesn’t change. Just the force that you exert on the scale.

6.4 Tension

Now a lot of problems we’ll discuss will involve ropes and strings. Most of the
time, we’ll assume that they are massless, or more precisely, that the mass of a
string is much smaller than the other masses in the problem. As you know from
everyday life, if you grab a weight by a string, you feel the full force of weight
transmitted through the string. This is illustrated in Fig. 6.2.

Here we have a person holding a string that’s attached to a weight. The
different colored arrows correspond to the forces acting on different objects. The
red arrows correspond to the forces acting on the weight. The blue correspond
to the forces acting on the string, and the green arrow, the force acting on the
hand.

We want to figure out what is the force acting on the hand. So we consider
each object separately. Call the force exerted by gravity on the weight W. Call
the force of the weight on the string FWS . These names are listed in the figure.
Then

FWS +W = ma = 0 (6.4)

It equals zero because the weight isn’t moving so the acceleration is zero.
Now lets look at the equation for the string, which involves the blue forces:

FHS + FWS = mstringa = 0 (6.5)
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String on hand

Hand on string

Weight W

Weight on string

F
SH

FHS

WS
F

F
SWString on weight

Figure 6.2:

This equals zero even if the acceleration is not zero. This is because we’re
assuming the mass of the string is zero. The force exerted by the string on the
weight, is called the “tension”.

Now let’s apply Newton’s third law. We know that forces come in pairs so
that FWS = −FSW , and FHS = −FSH .

Putting this all together, we quickly see that FSH = W .
As you can see from the above equation, the tension transmits the force

of gravity that acts on the weight, to a force acting on the hand. This is a
general feature of massless strings, and is true even if there is acceleration: the
magnitude of the force (i.e. tension) exerted at one end of a massless
rope is the same as on the other side, which can be seen from Eq. 6.5.

6.5 Problem solving strategies

There is no short cut to learning this stuff. It takes a lot of patience and
effort to master how to logically apply Newton’s laws to obtain the correct
answer. Remember this is physics, not philosophy. The answers you get can be
tested experimentally. There are never two right answers to well posed physics
problems. So if you get stuck do not:

1. Write down something that you know is wrong and continue.

2. Guess an equation.

3. Guess an answer.

4. Fudge your solution because you think you know the right answer and it’s
just not working out the way you think it should.
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Instead, realize that the answers are derivable from Newton’s laws. You just
need to be logical enough to see how to do it. In order to aid you, you should
follow the following advice. If you don’t, you have nobody but yourself to blame
when you screw up.

1. Draw a diagram. If you want, draw a rough sketch to get yourself off the
ground. Then identify all the forces in the problem. You saw an example
of this above with the picture of the hand and the weight in fig. 6.2.

2. Draw a “free body diagram” for each object. That is, draw a picture of
an object, and draw only those forces that act on the object. Make sure to
include all the forces that act on the object.

3. Figure out a good coordinate system to use for each object. That is
how the coordinate system is to be oriented. Them apply Fnet = ma
in component form. Do this for the x and the y components separately.
Remember to use symbols such as m1,m2 etc. instead of numbers
like 3 kg.

4. Solve the equations. If you’ve done everything right, you should be able
to solve for all your unknowns.

5. Check limiting cases. What happens if this mass goes to zero? This one
goes to infinity? What if this angle becomes 90 degrees? You get the idea.
If all the limiting cases seem to make sense, and the units check out, then
you’ve probably solved the problem correctly. If they don’t check out, at
least now you’ll have a clear logical description of your work and will be
able to go over it to check for mistakes.

Item 5 is particularly hard for most students to master. It’s easier for most
people to think concretely rather than abstractly. But if you don’t use symbols,
you won’t be able to take limits to check your answers. You’ll find that often
you’re doing way more work than you need to do. For example, if you use
symbols, you might get an expression like yx/y− x2/x, which equals zero. You
won’t need to plug in any numbers at all, and in fact if you do, you’ll be likely
to have rounded and get an nonzero answer like 0.001kg, which would be wrong.
So my advice to you is to work your way up to doing problems symbolically.
Work out problems with the numerical values, and then go back and do it
substituting in symbols. You’ll soon get used to using them. Although this
also takes discipline and practice, it’s well worth the effort. To help you, it’s
good to have a convention for symbols. Don’t call distances t, or masses v.
Stick with the convention that’s common and that I’m using. A mass could be
called m, or m1, if there’s more than one in the problem. Velocity v, and the
y component would be vy, and speed v. Distances in two or three dimensions,
r, in one dimension, or for components, use x, y, or z. Forces F, but tension
(which is force) is T . Acceleration is a.

One of the surprising things that happens at this point in the course is that
a lot of the hot shot students that actually like physics, find that they mess
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up, because they don’t solve problems systematically, but intuitively. When a
problem gets sufficiently complex even with great intuition, you can’t figure out
the right solution to a problem. If you’re talented at physics you’ll still need to
follow the above advice or you’ll quickly go from getting all the problems right
to messing them all up. Having intuition is great, but there’s more to physics
than that.

Now let’s looks at some examples of how you can systematically solve me-
chanics problems.

6.5.1 Tension on an inclined plane

Consider a block on a “frictionless” inclined plane. We’ll talk about friction in
a little while so don’t get too bothered by this term. Basically it means a very
very well greased surface, so that there is no force acting along any direction on
the surface of the plane. We have this block of mass m that is attached by some
string to a force meter. We want to know how much force is registered by the
meter. If the angle θ that the inclined plane makes with the horizontal is zero
then this force will be zero. But for other angles what is the answer?

Let’s follow the handy-dandy rules of above to quite effortlessly solve this
problem. Once you’ve gone through this once, you should try to solve it again
without looking.

Draw a diagram

Here’s the diagram. All forces acting on the block are in red. The ones acting
on the string are in blue.

m

θ

What are the forces acting on the block?

• There is the “normal force”. This force acts normal to the surface and
is exerted by the plane on the block. The reason it’s normal is that the
plane is frictionless and can’t exert forces along the direction of the plane.
So it has to be normal.

• There is the weight of the object due to the force of gravity. This acts
down.

• There is the force the string exerts on the mass. That force is parallel to
the plane
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Now how about the forces acting on the string? There are two drawn in
blue. Because it’s a string and its going over a frictionless wheel, the two blue
forces have the same magnitude. By the way, the force the string exerts on the
mass is the same as the force the mass exerts on the string by the third law.

Draw free body diagrams

So now we get rid of the actual shape of the block which is nothing to get sad
about seeing the block was real boring looking. We just draw all the red vectors
together starting from the same central point. It makes the whole thing look
simpler.

m

N

T

W

T’

T’
x

y

We’ve also drawn all the blue arrows together. This part is quite boring.
I’ve just included to let you know you often have to draw more than one free
body diagram to solve problems involving multiple objects. All this diagram
says is that the tension is transmitted all the way along the string.

F=ma in component form

Now we need to figure out a good coordinate system to use and apply
Fnet = ma for both the x and y components.

Funnily enough, the best coordinate system to use is the one tilted along the
inclined plane as shown in the figure below.

x

y

W θ

W
x

W
y
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This will take some practice to figure out. You can use any coordinate system
you want, but its good to use a simple choice as the answers tend to come out
a lot more easily that way. With this choice you can see that the only vector
that we have any trouble decomposing is the weight. The normal force and the
tension lie in the direction of the y and x axes respectively. This way we have
less trigonometry to do.

So decomposing the weight we have

Wx = −W sin θ , Wy = −W cos θ (6.6)

Because the mass is not moving, the acceleration of it is zero, so from the
second law, that means that the net force acting on the block is zero.

N+T+W = 0 (6.7)

This is a vector equation. We want to write it now at component form.
(Remember my advice!).

In the y direction, the tension is zero, but the normal force is entirely in this
direction. so

N +Wy = 0 (6.8)

This says that
N = W cos θ . (6.9)

In the x direction, the normal force is zero, but the tension entirely lies along
this direction. Therefore

T +Wx = 0 (6.10)

Therefore
T = W sin θ . (6.11)

Now as we said above, from the third law, this means that the scale will read
the same thing.

Remembering W = mg, we have deduced that the scale will read mg sin θ
.

Limits

Do the limits look right? When the angle θ is zero, the scale reads zero. When
it is 90 degrees, the scale reads mg. So yes the answer makes sense. Also the
units look right.

You see that all we did was to follow the rules, take out time, and everything
worked out. Pretty soon we’ll be able to solve much more complicated problems
by using the same strategy.

6.5.2 Mass held by two ropes

Consider a mass being held up by two ropes as shown. What are the tensions
in the ropes?
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m

θ θ

Draw a diagram

Now let’s add in labels for all quantities we’ll need.

m

W

T3

T3

T1 T
2

θ θ

Draw free body diagrams

T3

W

T

T1 T
2

3

θ

The first free body diagram labels all forces acting on the mass m. There
is the force of gravity, that is the weight W and the tension of the string, that
I’ve labeled T3.

Now something a little weird is necessary. We’ve drawn a free body diagram
for the junction between the three strings. The point is that because the accel-
eration of the junction is zero (and its mass is also zero), the net force acting
on the junction must be zero, by the second law. We had to realize that this is
an important piece of information that we must use to solve the problem.
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F=ma in component form

This time it’s pretty clear that a simple horizontal-vertical coordinate system is
the best one to use.

The two vectors that we’ll have to decompose are T1 and T2. So

T1x = − T1 cos θ, T1y = T1 sin θ (6.12)

and
T2x = T2 cos θ, T2y = T2 sin θ (6.13)

Again because the accelerations are zero, the net force on all objects is zero.
This tells you that T3 = W as expected.

The next thing to do is worry about the junction. The vector equation for
that is

T1 +T2 +T3 = 0 (6.14)

Solve the equations

Now let’s deal with the x direction. T3 points in the y direction so we don’t
need to worry about it. So we have T1x = − T2x. Expressing this using Eqs.
6.12 and 6.13 we have −T1 cos θ = − T2 cos θ or T1 = T2. That makes sense.
The tensions in the two strings are the same because the angles are the same.
It would seem bizarre if this was not true.

Now the y direction. We have to include all the tensions, T1y+T2y = −T3y.
But we know T3y = W and T1y = T2y = T2 sin θ. So that means that
2T2 sin θ = W = mg, or

T2 =
mg

2 sin θ
(6.15)

Limits

Well, the units are right. How about the limits? When θ is 90 degrees, then
each rope supports half of the weight which seems right. How about as θ → 0?
The tensions go to infinity! That means its impossible to support any weight
at all when the two strings are totally horizontal. This is actually true. It’s a
good thing to see if this agrees with your intuition.

6.5.3 Pulleys

Another rather important example is that of pulleys that have been used for
thousands of years to lift up large weights. The figure below illustrates a pulley.

How hard do you have to pull to keep the weight hanging, or moving up at
a constant velocity?

Assuming that the ropes can slide freely over the wheels, the tension along
the rope is the same everywhere. So we have the free body diagram illustrated
above on the right. We’ve also assumed that the weight of the pulley and rope
is negligible compared to the weight that’s hanging.
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T

T
TT

W W

TTT

If the system is not accelerating, then the sum of the forces in this free
body diagram must add up to zero. That says that 3T = W , or the tension
T = W/3. So you have to supply a tension of a third the weight of the object
to keep it hanging.

Of course if you wrapped the rope around the wheels more times, it’d be
even easier to lift the weight. The problem is that you’d have to pull a lot more
rope that way than if you wrapped it just a few times. We’ll see later why this
has to be in order to conserve energy.

6.6 Friction

If you push a heavy box across the floor, you have to apply a force in order
to get the box to start moving, and then keep applying a force to maintain its
motion. This force is needed in order to balance the friction force between the
box and the floor. There are some approximate facts about the friction force:

• The friction force points in the opposite direction to the force you apply.
(More generally, it is opposite to the net force that tries to move the box
across the floor.) If the applied force is small, the friction force is just big
enough to cancel it exactly.

• There is a maximum possible force of friction; if the applied force is greater
than that, the box starts to move.

• When the box is moving, there is a friction force that points in the direction
opposite to the direction in which it is slipping across the floor. This force
of “kinetic friction” is usually slightly less than the maximum possible
force of “static friction.”

• The maximum force of static friction, and the force of kinetic friction, are
approximately independent of the area of the bottom of the box, and are
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related to the weight of the box by

fs,max = µsN

fk = µkN. (6.16)

• More generally, whenever two objects are sliding past each other, or trying
to slide past each other, there is a friction force between them that is
approximately related to the normal force pushing the two objects towards
each other according to Eqs.(6.16).

Applied force (W   )
x

 f

(friction)

kinetic
static

Normally µs and µk are numbers around one or less, and depend on the
nature of the two surfaces. A shoe on a banana peel will be expected to have a
small coefficient of static friction, where as Good running shoes are designed to
have good traction and hence a large coefficient of static friction. Sometimes,
the difference between µk and µs is ignored, and one speaks of “the coefficient
of friction.”

We emphasize that the curve drawn in Figure 6.6 is only approximate; the
actual friction force that is experienced depends can vary if one tries the ex-
periment many times. The green region in particular is bogus. It is not at all
reproducible. It depends on whether you start with a static object and increase
the applied force, or you start with a moving object and decreases the applied
force. The physics of friction is a very interesting but complex subject and is
currently under investigation by a lot of researchers.

6.6.1 Example

Here we have pictured a block going down an inclined plane with coefficient
of kinetic friction µk. Assume it is sliding to the left as shown. Calculate the
acceleration, given the masses m1 and m2.

The tension T is the same throughout the string because we’re assuming
that the wheel at the top of the diagram is massless and that it can turn freely
(no friction).
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Free body diagrams

F=ma in component form

We’ve chosen the coordinate systems as shown. Note that it is perfectly con-
sistent to use two separate coordinate systems for the different masses. Keep
this point in the back of your mind when you go through this problem. Do you
notice anything illegitimate?

Let’s look at the first mass. We’ll denote its acceleration by a1.
We have Fnet = ma1 or

N+W1 +T+ f = ma (6.17)

The decomposition into components for the weight W1 is the same as in
section 6.5.1. See Eq. 6.6. So there are two forces acting in the y direction.
The weight has a component W1y in this direction and the normal force entirely
in this direction. The acceleration in the y direction is zero, since the block is
sliding along the x direction. So the y component of the above 6.17 is the same
as Eq. 6.9 which says

N = W1 cos θ (6.18)

The y component is

T + f −W1 sin θ = m1a1 (6.19)

But we also know that f = µkN . Putting this all together, the y equation
becomes

T + µkW1 cos θ −W1 sin θ = m1a1 (6.20)

Now on to block 2. Here all the action occurs in the y direction, We have

T −W2 = m2a2 (6.21)

Now let’s size up the situation here. We have two equations 6.19 and 6.21.
They contain three unknowns, the tension, and the two accelerations. So we
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can’t solve for these uniquely without some extra info. Aren’t we missing some-
thing? As things stand now, we haven’t said there’s any relation between the
two acceleration. But clearly they closely related. If the first mass goes down
the plane one inch, the second mass must go up the same amount. So the ac-
celerations are equal and opposite (think about the coordinate systems we’re
using)

a1 = − a2 (6.22)

Solve the equations

Now we have a third equation so can go ahead and solve for the acceleration.
Subtracting 6.21 from 6.19 we can eliminate the tension giving

W2 + µkW1 cos θ −W1 sin θ = m1a1 −m2a2 = (m1 +m2)a1 (6.23)

Now remembering that W1 = m1g and W2 = m2g, we can solve for the
acceleration

a1 =
g

(m1 +m2)
[m2 + (µk cos θ − sin θ)m1] (6.24)

Check answer

Well the units look right. How about what happens if the acceleration is zero
and m2 = 0? Solving that case, and replacing µk with µs, we have µs = tan θ.
This is the slope at which the block first starts slipping.
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Chapter 7

Work and Energy

7.1 Basic ideas

Last chapter we covered Newton’s three laws, which can be used to predict how
things move in time. You have to know what the forces are between objects, but
assuming that, Newton’s laws tell you everything. So what is there left for us
physicists to do? Actually a hell of a lot, like surf, play bridge, sit around a talk
about how smart Newton was. But seriously, buried in Newton’s laws there are
some extremely important concepts that aren’t at all obvious. Most importantly
is the idea of conserved quantities. These have very important consequences to
physics. The first one we’ll talk about is conservation of energy. We’ll define
this thing called “energy” in a while. And the neat thing about energy is that
it is conserved, that is it doesn’t change in time. You should understand that
we don’t postulate that it doesn’t depend on time. We can actually derive it
as a consequence of Newton’s laws. That’s one nice thing about physics. That
you don’t have to remember very much. A few basic equations is all you need
and the rest can be derived. Of course you need quite an big CPU to be able
to this in practice, so it’s good to try to remember other things as well, like
conservation of energy.

We’ll start now by considering a thing related to energy called work.

7.2 Work with constant forces

Imagine you have to vertically lift a crate off the ground by 1 meter. The crate
weighs 200 N. You have to apply a force of 200N to the box in order to barely
lift it. The work you do is just this force, 200 N times the distance you move
it, 1 meter. So the work you do is 200 Nm. We’ll define a new unit called a
“Joule” (J) which is a Newton times a meter. So you do 200 J of work lifting
this crate vertically up.

This is illustrated in the figure below by the red arrow:

65
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1 m
W = 200N

F=200N

θ

Now suppose you don’t move it vertically up but at some angle θ with
respect to the vertical, as illustrated by the blue arrow. So you still end up 1
meter higher than where you started but some distance away horizontally. If
we want a sensible definition of work, we’ll want the work to be the same. So
the work you do is the force times the distance gone in the vertical direction,
or more generally, the distance gone in the direction of the force. The force
F is vertically upward and the vector representation of the distance traveled is
the blue arrow. So how do we come up with a nice concise definition of work
involving vectors? It’s easy with the dot product. We just take the dot product
of the blue displacement vector ∆r with the force F. So the work is

W = F ·∆r (7.1)

This is the definition of work when you have a force that doesn’t change
as you move, and also the path you take is straight. We’ll now consider in
one dimension how the work is related to velocity and introduce the concept of
kinetic energy.

7.3 Kinetic energy with constant forces

The kinetic energy K of a particle with mass m and speed v is somewhat
mysteriously defined as

K =
1

2
mv2 (7.2)

This is true even in three dimensions but we’ll start by considering it in just
one dimension. We see now why this is a sensible definition.

Consider applying a constant net force F to an otherwise free particle. It
will accelerate with constant acceleration because F = ma. Remember that
with constant acceleration we showed earlier that over some time interval you
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could relate initial velocity v0, final velocity v, and distance traveled ∆x as

v2 − v20 = 2a∆x. (7.3)

Multiply both sides by 1
2m, and this becomes Kf − Ki = ma∆x = F∆x.

As usual, we’ll write this change in kinetic energy as ∆K ≡ Kf − Ki. But in
one dimension, you don’t have to worry about the dot product so F∆x = W ,
which is the work done by the force F, so we end up with the simple looking
formula

∆K = W (7.4)

This is called the “work-energy theorem”. In words this says that the change
in kinetic energy is equal to the work done by the force F on mass m. We had
only considered one force here, but it’s the same argument when we have many
forces and this F becomes the net force. So this kinetic energy is a pretty neat
thing. If you know its change, you can figure out how much work was done by
all the forces acting on the the particle.

7.4 Work with variable forces

Now what if the force is variable, that is it depends on position? The simplest
example of this is a spring. If a mass is attached to the end of a spring, and the
spring is stretched, the force exerted on the mass is F (x) = −kx, where x is the
amount of stretching. The negative sign tells us that the mass is being pulled
back by the spring if the stretching is positive; if the spring is compressed, x is
negative and the mass is pushed out. The parameter k is the “spring constant”,
and is bigger for a stiffer spring. Of course, this is an approximation: if you
stretch or compress the spring too much, the force is no longer proportional to x
(and eventually the spring breaks or is scrunched up to its smallest size), but it
works well if x is not too big. The fact that a spring exerts a force F (x) = −kx
is called Hooke’s law; it is an approximate result like the friction ‘law’ we saw
in the last chapter, rather than something like Newton’s laws which are exact.

Can we figure out what the work is in this case? Of course, I wouldn’t have
mentioned otherwise. Look at the diagram below. We’re applying a force to the
spring in order to move it from position xi to xf .

The red line is the force as a function of position x. (If this was a spring
it’d be a negative slope but I’m not assuming anything about the force function
here). Let’s calculate the total work in going from xi to xf . Well we know how
to get the answer if the force is constant, but here it’s clearly varying. So we’ll
try to get an approximate answer by replacing the smooth curve in red by the
staircase shown in blue. We’re replacing it with this because we know how to
calculate the work in going along one of the steps, since the force is constant
on a step. In the diagram we see the work done in going along between xj and
xj+1 can be calculated because the force, Fj , is constant in that interval. It’s
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just Fj∆x. So to get the total work we have to sum up over all these intervals:

W ≈
∑

j

∆xFj (7.5)

Now we’ll do the old calculus trick of taking the limit as ∆x → 0. In this
limit we get an integral so the work becomes

W =

∫ xf

xi

F (x)dx. (7.6)

This can be interpreted, as usual, as the area under the curve F (x).
The integral is nothing more than inverse differentiation: if you can guess a

function V (x) such that V (x + ∆x) − V (x) = (∆x)F (x), then W = V (xf ) −
V (xi). In the limit ∆x → 0, this means guessing a function V (x) such that
dV/dx = F (x). (Instead of guessing, people memorize the inverse differentials
of a large number of functions and learn tricks to change unfamiliar integrals
into one of the standard forms.)

In the case of the spring, the force F = −kx so the work done by the spring
in moving an object from xi to xf is

W = − 1

2
k(x2

f − x2
i ) (7.7)

as can be verified by checking that dW/dxf = −kxf .

7.5 Kinetic energy with variable forces

Now what happens to Eq. 7.4 when we have variable forces? Basically nothing.
This can be seen as follows. Still using this staircase figure, we see that along a
step we can apply Eq. 7.4. The incremental work moving a distance ∆x is still
the change in kinetic energy.
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Now if we move two steps the total work is just the sum of the work from
the individual steps W1 +W2, say. This is just the sum of the two changes in
kinetic energy. But the total change in kinetic energy is just the sum of the two
changes. So that means that for two steps Eq. 7.4 is still true. So generalizing
this, you can see that it will be true for the addition any number of steps. So
Eq. 7.4 is true for any variable force in one dimension!

Big yawn? OK, let’s do an example and you can see how powerful this result
actually is!

7.5.1 Example

This is a great exam problem so listen up!
A spring is anchored to some point on a table. The free end is placed at the

origin of a coordinate system x = 0. The spring constant is k = 1000 N/m.
The other end is compressed 2 cm and a mass of 1.6 kg is attached to it as
shown.

2cm

x=0

(a) When you let go of the mass it accelerates towards x = 0. What is the
velocity of the mass at x = 0? Assume that the table is frictionless.

Hint: use the work energy theorem
(b) Now assume that there is a frictional force of 4N between the block and

the table. What’s the velocity in this case?

Solution

(a) So how do we use the work energy theorem? Well first we calculate the
work. The initial position xi = −.02 m and the final position xf = 0. From
Eq. 7.7 we see that

W = − 1

2
k(0− x2

i ) =
1

2
kx2

i (7.8)

What about the change in kinetic energy? The initial kinetic energy is zero
so ∆K = 1

2mv2f .
Equating ∆K to W we have

1

2
mv2f =

1

2
kx2

i (7.9)

which simplifies to

vf =

√

k

m
|xi| =

√

1000 Nm/1.6 kg.02 m = 0.5 m/s . (7.10)
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(b) In this case we have an additional force acting on the block, It is a
constant force and opposes the direction of motion. Therefore the work done
on the block due to this frictional force is Wf = f∆x where f = 4 N.

So get the net work on the block we have to add in this new force:

Wnet =
1

2
kx2

i − f∆x (7.11)

Again, by the work energy theorem, this must be equal to the change in
kinetic energy, so we have

1

2
kx2

i − f∆x =
1

2
mv2f (7.12)

Solving for vf , we have

vf =

√

k

m
x2
i − 2

f∆x

m
= .39 m/s (7.13)

7.6 Work with variable forces in 3d

Let’s repeat the same logic we did in one dimension. We’ll think about a force
now that’s a function of position in three dimensions. What’s an example of
this? Well the earth going around the sun. The force of the sun on the earth
depends on where the earth is located. Another example is a bungee cord with
one end anchored down. The force exerted by the other end depends on how
far away it is from the anchor.

Following the same logic, we’d think about moving an object along some
three dimensional path as shown below.

r∆

F

ri

r
f

To get the total work, we’ll approximate the smooth red path by the black
line segments as shown. Then we’ll approximate the force as being constant on
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a particular line segment. The reason for doing this, is that we know how to
calculate the work done by a constant force when going in a straight line. For
one of these line segments its just F ·∆r. Now we want to sum over all these
different line segments. You could write it as

W ≈
∑

F ·∆r (7.14)

Now we’ll take the same old calculus limit as before, but this time we’ll get
what’s known as a line integral

W =

∫

rf

ri

F · dr (7.15)

The meaning of the line integral is just as we described. You some up all
the incremental work going along this path, taking infinitesimal steps as you go
along it.

7.6.1 Work Energy theorem in 3d

The derivation of the work energy theorem is really the same idea as we just
did in section 7.5, but with more opaque notation. In general it is true that

• the change in kinetic energy is equal to the total work done on an object.

7.7 Potential Energy

We just introduced one form of energy, the kinetic energy, but there is another
equally important form: potential energy.

We’ll talk about it now, but first I’ll let you know a good way to think about
it. You can think of it as stored energy, that could be converted to kinetic
energy to do work. An example of this is a waterfall. The water at the top of
the fall has a fairly low kinetic energy but a lot of potential energy. By the time
it gets to the bottom of the fall, it has lost a lot of its potential energy and has
gained a lot of kinetic energy.

When is this a useful concept? We have seen how to calculate the work done
on an object when it moves along a path. If the work done between the points
ri and rf can be expressed as a difference

U(rf )− U(ri) = −W = −
∫

rf

ri

F · dr, (7.16)

independent of the path taken to go from ri to rf , then the force is called a
conservative force and U(r) is the potential energy at the point r. Since we have
seen that the change in kinetic energy along any path is always

W =
1

2
mv2f − 1

2
mv2i , (7.17)
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the sum of the kinetic energy K and the potential energy U is constant, i.e.
independent of time. We call K + U the total mechanical energy E.

Notice that, if the forces are conservative and a potential energy can be
defined, all we ever deal with are differences in the potential energy between
two points. Therefore, we can change U(r) to U(r) + const using any constant,
without messing up anything. For those of you who are familiar with integral
calculus, this is nothing more than the “constant of integration”. This isn’t a
problem; we will see that we can get a lot out of the fact that, for conservative
forces, the sum of the kinetic and potential energy is independent of time.

7.8 Examples of conservative and non-

conservative forces

Recall the crate example we began this chapter with (7.2). The work done
lifting the object straight up was the same as lifting to the same height at a
different angle. Now what happens if we want the final position of the crate to
be the same in both case, as illustrated below?

1 m
W = 200N

F=200N

θ

Well the total work is the same because the work along the horizontal part
of the red line is zero, so again, the work for these two paths are the same. In
fact you could choose the magenta path and you’d get exactly the same answer.
You should be able to show this by reasoning similar to how we saw that the
red and blue path gave the same work.

This force, the gravitational force, is an example of a conservative force. It
doesn’t matter what path you take, to go between two points, the work is always
the same if you have a conservative force.

The gravitational potential energy is easy to calculate now. The work done
in moving an object by a small distance ∆r is F · ∆r = −mgĵ · ∆r. But ∆r ·
ĵ = ∆y, the difference in the vertical coordinates. So we have the work is just
−mg(yf − yi). We can define the potential energy uniquely by saying we want
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U = 0 at y = 0. So from the definition of potential energy, Eq. ?? we have
have

U(y) = −W = mgy (7.18)

Another example of a conservative force is the force of a spring, from Eq.
7.7 we see that it depends on only the end points, which means that it must be
conservative. If one chooses the potential energy to be zero when x = 0, then
U(x) = 1

2kx
2.

In fact, for any one dimensional problem where the force just depends on
the position, we can define a potential energy as

U(x) = −
∫ x

xi

F (x)dx+ U(xi). (7.19)

The integral can always be obtained, even if it isn’t easy. If the force is not just
a function of x, this argument fails. For example, in the problem we considered
earlier with a spring connected to a block that slides on a table that exerts
a force of friction, the friction force points to the left (right) when the block
is moving to the right (left), and therefore the force at a point x cannot be
expressed as F (x). In three dimensional problems, the condition that

∫

F · dr
should be independent of the path between the end points is harder to achieve.

You can easily convince yourself that the work done by a conservative force
going on a closed path, that is one where the beginning and end points are the
same, is zero. Give it a try!

Example

You throw up a rock vertically with an initial speed v. What is the speed when
it comes down to the starting point?

Solution

Well the force of gravity is the only force acting on the rock. It is conservative.
It ends up where it started meaning that the total work must be zero. By the
work energy theorem this must be equal to ∆K. So the final and the initial
speeds are the same.

What about the force of friction? Is that conservative? Well if you go around
the room in a big circle pushing a crate on a rough surface and end up where you
started, do you do any work? Of course you do. The work is the circumference
times the frictional force. Therefore this can’t be a conservative force.

Even in the case of the rock thrown vertically, air resistance slows it down
when it is going up, and slows it down even more when it is coming down.
Therefore the system is not exactly conservative, and the final speed is slightly
less than the initial one. For the kind of speed at which you can throw the rock,
ignoring the air resistance is a good approximation.

In everyday situations, conservation of mechanical energy is at best a good
approximation. (It can be a very bad approximation, as with the crate pushed
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around on the rough surface.) But it can make it so much easier to solve
problems, that we use the approximation whenever it is reasonable. And there
are certain situations, such as the path of planets in the solar system, where the
approximation is extremely good: there is no friction or air resistance when a
planet moves in vacuum, in space.

For non-conservative forces, the mechanical energy changes with time. But
conservation of energy, not just mechanical energy, is more general than this.
Thus if you have non-conservative forces such as friction, some mechanical en-
ergy goes into heat, that is mechanical motion at a molecular level. If you were
to add in this extra energy, you’d see that energy is still conserved. If a ball
bounces on the table, some mechanical energy goes into heat and into sound
(you hear the ball bounce). The total energy is always conserved. That’s a
general principle of physics.

The reason for the conservation of energy has to do with the simple observa-
tion that the fundamental laws of physics don’t change with time. If you do an
experiment on an electron on Tuesday, you’d expect to get the same results on
Friday. Unless of course it’s Friday the 13th, when no experiments work. This
simple idea that the laws of physics don’t change with time, leads to conser-
vation of energy. It is not obvious how one leads to the other, but if you take
more advanced physics classes, you’ll eventually see why that’s so.

7.9 Using the conservation of Mechanical En-

ergy

We now consider various examples where we can use the fact that the forces are
conservative, and mechanical energy is conserved, to solve problems efficiently.

7.9.1 Example: Pendulum

Consider the pendulum below. It has a length L and starts at rest at an angle
of θ0 with respect to the vertical as shown.

What is its speed at the lowest point?

Solution

Well what forces are acting on the pendulum? We’re ignoring friction, so the
only forces are the tension and the force of gravity. The tension acts perpendic-
ular to the direction of motion and hence does no work. The force of gravity is
conservative, so we can use conservation of energy to solve this problem.

Define y = 0 at the point the pendulum is attached to the ceiling. We’ll first
talk about the initial state of the pendulum, and then its final state.

• initial time: The initial y value of the pendulum is y0 = − L cos θ.
Therefore the initial potential energy is −mgL cos θ0. The initial kinetic
energy is zero. Therefore the total energy is K + U = −mgL cos θ0.
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• final time: The final value of y is −L and we’ll call its final kinetic energy
1
2mv2, so the final energy is 1

2mv2 + (−mgL)

The initial and final energies are the same, by conservation of mechanical
energy. Therefore we can solve for v:

v =
√

2gL(1− cos θ0) (7.20)

7.9.2 Example: Slide

Consider the slide below, and assume that its quite frictionless. If you prefer,
we could be more adventurous and imagine that this is a roller coaster. Don’t
get too carried away, we got to keep our minds on the physics here.

h

x

y

N

If the object shown starts out at rest at a height h and is let go, what is its
speed at the bottom?
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Solution

We’ll solve this in the same way as the pendulum example, using conservation
of mechanical energy. Here there are two forces acting on the sliding object,
the force of gravity and the normal force N, but here again, the normal force is
acting perpendicular to the direction of motion, and hence does no work, so we
only need to consider the force of gravity to get the work. It is a conservative
force, so we can use conservation of energy.

We’ll first talk about the initial state of the slide, and then its final state.

• initial time: The initial y value of the object is h and its initial kinetic
energy is zero. Therefore the initial energy is E = K + U = mgh.

• final time: The final value of y is zero and its final speed we’ll call v. So
the final energy is 1

2mv2.

So now we equate the initial and final energies, since energy is constant. We
get

v =
√

2gh (7.21)

One thing you should think about is: how would you solve this problem
using Newton’s laws? In principle it’s possible because conservation of energy
is a consequence of Newton’s laws, however it is by no means obvious how to do
it. Note that the final answer is independent of the shape of the path. Is that
really true?

7.9.3 Example: Ball in circle

Consider a ball on a string being whirled around vertically. Assume there is no
friction so that energy is conserved.

Show that the difference between the tension at the bottom and the top
is six times the weight of the ball. This problem is a bit trickier than the
previous examples we just did, because it involves conservation of energy and
Newton’s laws. But if you remember how we solved for tensions and centripetal
acceleration, then it’s not so hard.

Solution

We need to use Newton’s laws because this problem explicitly involves forces;
conservation of energy alone can’t be sufficient to solve this problem. But we’ve
seen from the pendulum example above, energy considerations are extremely
powerful and so we’ll use it in addition to Newton’s laws.

So how about Newton’s laws applied to the ball at the bottom? Well
Fnet = ma. What’s the acceleration? It’s not zero because the ball is traveling
around in a circle. We know that it points up and has a magnitude of v2/R.
What’s the net force? The tension points up, but the weight mg goes down so
we have

Tbottom −mg = mv2b/R (7.22)
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where vb is the speed at the bottom.
The tension at the top is similar but we have to realize though that the

acceleration and the tension are now pointing in the opposite directions, so

−Ttop −mg = mv2t /R (7.23)

where vt is the speed at the top.
We were asked for the difference between these tensions so adding these

equations, we have

Tbottom − Ttop − 2mg = m(v2b − v2t )/R (7.24)

So this is all we’ll use of Newton’s laws. Now we need to figure outm(v2b−v2t ),
which looks awfully closely related to kinetic energy, so now we’ll use conserva-
tion of energy to figure it out.

Let’s but y = 0 at the bottom of the circle. Then the energy at the bottom
is K + U = 1

2mv2b , and the energy at the top is K + U = 1
2mv2t + mg2R.

Equating these two energies, we see that

1

2
m(v2b − v2t ) = 2mgR (7.25)

Using this is Eq. 7.24 we have

Tbottom − Ttop = 2mg + 4mg = 6mg (7.26)

which is what we wanted to show.
Again this problem would be possible, but very hard to solve using Newton’s

laws alone.
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7.9.4 Example: Block on sphere

A block is placed on the top of a sphere and released from rest. At what height
does it lose contact with the sphere? Assume there is no friction.

Solution

Another problem where conservation of energy is useful.
We draw a picture of the situation below

N

θ

W

x

y

WθWx

The red arrows represent a free body diagram of the block.
There are two forces, the weight and the normal force. What’s the condition

for when the block looses contact with the sphere? It’s when the normal force
is zero.

So lets apply Newton’s laws to this situation. When the normal force is
zero, there’s only one force, that is gravity acting on the block. Using the
coordinate system shown, the acceleration is in the negative y direction. It has
a magnitude of v2/R. The component of gravity in the y direction is, from the
diagram, −mg cos θ. So we have

−mg cos θ = −mv2/R (7.27)

or

mv2 = mgR cos θ (7.28)

Now let’s use conservation of energy, choosing that the potential energy is
zero at the center of the sphere. Then we have initially E = mgR and finally
E = 1

2mv2 +mgR cos θ. Eliminating E, we have

mgR =
1

2
mv2 +mgR cos θ (7.29)
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Now using Eq. 7.28 this gives

mgR =
1

2
mgR cos θ +mgR cos θ (7.30)

Doing a little algebra this gives cos θ = 2/3. This is a height of

h = R cos θ =
2

3
R (7.31)

7.10 Non-conservation of mechanical energy

We saw that when we have just conservative forces, that energy is conserved.
But what happens if a non-conservative force such as friction is in a physical
situation? Can we still get something out of energy arguments? Well the answer
is yes we can. Things aren’t quite as powerful as before, but valuable information
can still be obtained.

Let’s try to go through the derivation of conservation of mechanical energy
and see what happens when non-conservative forces are included.

Let’s separate out work done on an object into two parts, those derived
from conservative forces, such as gravity, and those from non-conservative forces
such as friction. The total work W is the some of the conservative and non-
conservative contributions,

W = Wc +Wnc (7.32)

For the conservative partWc it is possible to express it in terms of a potential
U , because just as before Wc = −∆U . So W = −∆U +Wnc. But also we
recall that W = ∆K. Together this gives

∆(K + U) = Wnc (7.33)

So the change in mechanical energy is equal to the work done by non-
conservative forces.

7.10.1 Example

A pendulum starts from rest, making an angle of 60 degrees with the vertical.
After swinging one cycle and coming back to rest, it now makes an angle of only
45 degrees with the vertical. What is the work done by frictional forces?

Take the mass of the pendulum to be 1 kg and its length to be 1 m.

Solution

Call the length of the pendulum L, its mass m, and the initial and final angles
θi and θf , respectively.

We want to calculate the change in the mechanical energy and that’ll give
us the work done by frictional forces.
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The initial and final kinetic energy of the ball is zero. So the change in
mechanical energy is just ∆U = Uf − Ui.

∆U = mg∆y = mg(yf − yi). Using trigonometry we can express the
difference in heights ∆y in terms of angles, so we have

Wnc = mgL(cos θf − cos θi) = − 2.03 J (7.34)

7.11 Power

The power delivered to a system is the rate energy is transfered to it. That
means it has the dimensions of energy/time. In SI units this is Joules per
second. We call that Watts for short. That should be a familiar unit to you, if
you and your friends have ever tried to change a light bulb. If you’ve ever heard
a friend bragging about a car, you might be familiar with the unit of horsepower
(hp). 1 hp = 550ft lb/s = 746W. So a 25 hp jalopy can keep going a lot of
light bulbs!

The average power supplied to say, light bulb, over a time t is

P̄ =
∆W

∆t
(7.35)

and the instantaneous power (or power for short) is

P =
dW

dt
(7.36)

Suppose we have an object and we are pushing it with a force F, what power
do we deliver to the object? Well in a time t we do work F · dr. So the power is

P =
dW

dt
=

F · dr
dt

= F · v (7.37)

7.11.1 Example

A horse pulls up a 225 lb man at a speed of 2 ft/s as shown below. What is the
power exerted by the horse in lifting this man?

The tension in the rope is the weight of the man. And from the equation
above the power should be this tension man times the velocity the horse is
moving. This is 225 lb × 2 ft/s = 550 ftlb/s = 1 hp. Now that’s one strong
horse!

7.12 Stability of equilibria

Potential energy is such a gosh-darned useful concept that many times it’s easier
to think about physics in terms of it, rather than forces. We’ll try to illustrate
this in one dimension and use potential energy to describe the “stability of
equilibria”. So if now we want to think in terms of potential energy U(x), we
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v 

would like to know how to relate the potential energy of an object to the force
acting on it. Recall that

U(x) = −
∫ x

xi

F (x)dx+ U(xi) (7.38)

which is equivalent to

F (x) = − dU

dx
. (7.39)

Equilibrium points can be thought of as follows. If an object is placed at
rest at an equilibrium point, it’ll stay there for all time. This is therefore a
point where the force acting on the object is zero. This therefore corresponds
to a point where the slope of the potential energy curve is zero.

Now let’s discuss shapes of various potential energies in one dimension, and
see how this leads to ideas of stability.

First, we’ll consider this nice concave shaped potential function pictured
below

Below it is sketched the force, obtained by taking the negative derivative of
the potential energy. On top is pictured the force a red ball will feel when at
various x positions. If the ball is to the left of the minimum, the force is positive
and therefore points to the right. Conversely, if the ball is to the right of the
potential minimum, it’ll feel a force to the left. It feels no force at the minimum
because there the derivative is zero.

So if the ball starts off at rest at the minimum, it’ll stay there. If it starts at
rest away from it, it’s pulled towards the minimum. Suppose it starts out like
the red ball on the right. It’ll start moving towards the minimum, transferring
potential energy to kinetic energy. Since energy is conserved, the maximum
potential energy is when the kinetic energy is zero. That energy E, is shown by
the horizontal dashed line. So this means that the particle can’t move up to a
higher starting point than this horizontal line. This means that the motion is
bounded. We call this minimum, for obvious reasons, a stable equilibrium point.

Now let’s look at the upside-down version of the same potential
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f(x)

x

x

U(x)

E

Figure 7.1: Stable equilibrium

Now everything is reversed. The force is the negative of what it was before.
So if a red ball starts on the left of the potential maximum, it’ll be pushed away
from it. If it starts on the right it’ll also be pushed away from the maximum.
It feels no force at the maximum itself so if a ball starts out at rest at the
maximum, it’ll stay there for all time.

But what we can see is that if it starts out at rest just slightly away from
the maximum, then it’ll continue to move away. In this case the motion is
unbounded. We call this maximum, for equally obvious reasons, an unstable
equilibrium point.

An equilibrium point of a higher dimensional system can be stable in some
directions and unstable in others.

Lastly, consider the potential shown below

Here the force is zero over a finite range in x. If a particle starts off at rest
any point on the top of this curve, it’ll remain there. It’s neither pulled one way
or the other. Such a situation is called a neutral equilibrium.

Intuitively, it seems that the potential energy is pretty easy to understand.
Take the case of the first curve we discussed, that of a stable equilibrium. You
could think of the potential energy as being a salad bowl, and the red balls
as cherry tomatoes (organic whole ones obviously) that are placed, with a little
lubricating dressing, at various starting positions inside the bowl. They’ll always
roll down towards the center of the bowl. See, the person that invented the
salad bowl must have understood something about stable equilibria. If instead
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f(x)

x

x

Figure 7.2: Unstable equilibrium

the inventor had got their minus signs mixed up, they would’ve probably mis-
invented an upside-down salad bowl. That’d be bad news at a dinner party.
The guests would see the tomatoes careening across the table, spreading your
vinagrette all over your new Kmart tablecloth, and eventually on someone’s lap.
This is the case of an unstable equilibrium, also pictured above.

The case of a neutral equilibrium is what I like to use at my place, use no
bowl at all, you just place things directly on the table. This saves on washing
up.
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U(x)

f(x)

x

x

Figure 7.3: Neutral equilibrium



Chapter 8

Momentum

Momentum is a very useful concept owing largely to the fact that as we shall
see shortly, it is conserved. Like conservation of energy, this allows you to solve
a lot of problems that would be very difficult to solve any other way. One
important application of this conservation law, is to the study of collisions.
Collisions occur when two objects, or people, bump into each other. Besides
exchanging pleasantries such as “Excuse me, I didn’t mean to break your nose”,
they exchange some of their energy and momentum. We will see how to use this
to find out the trajectories of the objects after the collsion. But first we need
to define momentum.

8.0.1 Definition of Momentum

The momemtum of a point particle of mass m going at velocity v is

p = mv (8.1)

As a simple example, consider a ball with mass of 0.5kg and with a velocity
in the positive x direction of 2m/s, the magnitude of the ball’s momemtum is
then 0.5× 2kg m/s = 1kg m/s.

Now if you have two particles, with masses m1 and m2 and velocities v1 and
v2, the total momentum of these particles , ptot is

ptot = p1 + p2 = m1v1 +m2v2 (8.2)

That is, the momenta add normally as vectors are supposed to. As an example,
consider the ball we just considered, and another ball, with mass 1kg, travelling
in the negative x direction with a speed of −1m/s. One ball is going to the
right, the other to the left. If you sum the two momenta together, you get a
total momentum of zero.

Now how about for three particles? How about four particles? How about
45820349 particles? Hmmm, looks like a lot work. We can get around this by

85
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getting a little more sophisticated and write the definition of the total momen-
tum of N particles, of masses m1, . . . ,mN and velocities v1, . . . ,vN as

ptot =

N
∑

i=1

pi =

N
∑

i=1

mivi (8.3)

8.0.2 Relation between momentum and kinetic energy

Sometimes it’s desirable to express the kinetic energy of a particle in terms of
the momentum. That’s easy enough. Since v = p/m and the kinetic energy
K = 1

2mv2 so

K =
1

2
m(

p

m
)2 =

p2

2m
(8.4)

Note that if a massive particle and a light particle have the same momentum,
the light one will have a lot more kinetic energy. If a light particle and a heavy
one have the same velocity, the heavy one has more kinetic energy.

8.0.3 Relation between momentum and force

We’ll start by considering one objects and then move on to consider two or more
objects.

One object

By the magic of calculus, we can easily see the relation between force and
momentum for a single object. Let’s say the a point mass is being acted on by
a force F. Then we know its acceleration, right? It’s just F = ma. So what
about momemtum? Well if you go into hypnosis you might be able to regress to
a time a few weeks ago and then remember the jolting definition of acceleration

a =
dv

dt
(8.5)

Using these two equations, we have

F = m
dv

dt
=

dmv

dt
(8.6)

But mv is just the momentum we’ve just defined, so when I snap my fingers
and wake you up, you’ll immediately see that

F =
dp

dt
(8.7)

This is the total net force acting on this one object.

Now let’s try to understand two objects.
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Two objects

Now we have to distinguish between two different kinds of forces, internal and
external. Think about two booby birds as being our system. Suppose they fly
into each other.

. .

1 2

F

F12

21

F1 F2

There are forces between the birds when they hit, the force that 1 exerts on
2 and the force that 2 exerts on 1, F12 and F21 respectively. These are internal
to the booby bird system. But both birds are also acted on by the force of
gravity, so the weight of each bird, F1 and F2, are external forces due to the
earth acting on each bird.

The total force acting on booby 1 is the sum of the internal, F21, and the
external, F1, forces, Ft1 = F1 + F21. Similarly for the second bird, Ft2 =
F2 + F12.

Now let’s calculate the net external force on these boobies. It’s
Fnet,ext = F1 + F2 . This is the net external force acting on the system.
Remember the birds have forces between each other too, F12 and F21 . But
I didn’t include these. However even if I did the answer would be unchanged.
That’s because of Newton’s third law that the internal forces are equal and
opposite, so they cancel.

(Of course the forces don’t cancel for each booby, they definitely feel the
force of their brethren bird. But F12 and F21 act on different objects, not on
the same bird.)

So we have the net external force:

Fnet,ext = F1 + F2 = F1 + F2 + [sum of all internal forces (i.e. 0)] (8.8)

= [sum of all internal and external forces] = Ft1 + Ft2

But we just learned that

Ft1 =
dp1

dt
(8.9)
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and

Ft2 =
dp2

dt
(8.10)

So combining these we see that

Fnet,ext = Ft1 + Ft2 =
dp1

dt
+

dp2

dt
=

dp1 + p2

dt
=

dptot

dt
(8.11)

At this point I’ll drop the ext subscript, writing Fnet,ext = Fnet, because
we saw that the total net force and the total net external force were the same
from Newton’s third law. Plus too many extra subscripts make these equations
harder to read.

By using summation notation you can easily see how to extend this result
to N particles, so that

Fnet =
dptot

dt
(8.12)

Good. Now we see that the rate of change of total momentum is the net
(external) force acting on the system. This momentum thing is starting to look
more useful!

8.0.4 Conservation of momentum

In many cases the net force acting on a system of particles is zero, or at least
very close to it. For example, if you are on a nearly frictionless surface such
as ice, the net force in the horizontal direction is zero and you will quickly slip
and fall down. If you’re wearing skates or rollerblades you might notice that
there is little friction in the direction of motion so the net force acting in that
direction can be quite close to zero. Since you are a system of particles, actually
quite a sizeable number of particles (sorry for getting a bit personal here), then
this is an example of a system (namely yourself on skates) that has zero net
force acting on it in the horizontal direction. Other systems of particles, such as
isolated atoms and molecules, provide another example of cases where often zero
net force acts on the system. We’ll talk a little bit more later about why even
with friction, conservation of momentum can often still apply pretty accurately!

So let’s derive conservation of momentum when Fnet = 0. Eqn. 8.12
becomes

0 =
dptot

dt
(8.13)

Now if the derivative of something is always zero, that something is a con-
stant. This means that

ptot = constant (8.14)

That is the total momentum of a system is conserved, if the net force acting on
the system is zero.

Let’s talk about how poweful this conservation law is. It’s kind of like energy
conservation, inside the system, momentum can be transfered from one particle
to another. But when this happens, the total momentum must stay unchanged.

Let’s see how this works through an example.
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8.0.5 Example

A spacecraft is launched from the ground, going up vertically. The engineers
who designed it didn’t learn their mechanics very well because they spent too
much time partying. As a result, the spacecraft quickly breaks up 1000 m off
the ground into two pieces. The first has a mass of 10000 kg and the second
a mass of 20000 kg. The first one is seen flying off initially in the horizontal
direction with a velocity of 100 m/s due east. What was the horizontal velocity
of the second piece? Ignore air resistance.

8.0.6 Solution

So can we apply conservation of momentum? Well, in the horizontal direc-
tion we’re ignoring air resistance, so the net force on the pieces is zero. Now
there were certainly some large forces acting on the the spaceship, otherwise it
wouldn’t have exploded. Don’t these screw things up? No. Because those forces
are between atoms that are part of our system. The different atoms are pushing
and pulling each other, in a hideously complicated way, but they’re all internal
to the system. The net (external) force acting on the system in the horizontal
direction is still zero. So we can apply conservation of momentum.

The initial momentum in the horizontal direction is zero. So the final mo-
memtum should also be zero:

m1v1 +m2v2 = 0 (8.15)

Solving for v2, we have

v2 = − (m1/m2)v1 = (10000/20000)100 m/s = 50 m/s. (8.16)

8.1 Center of Mass

Now we introduce an important concept that often allows us to think of a
collection of particles in terms of a single vector. Take for example a base-
ball. We don’t really want to think of atom 1029890123890 being at position
(1.112323,-2.21334123,0.123340984) cm and atom 1029890123891 being at po-
sition (1.112324,-2.21334122,0.123340985) cm etc.. It would take a long time
to describe that baseball. We have the feeling that there is a simpler way to
describe the baseball. It’s got a radius and a mass, and a center coordinate.
What we’ll see now, is that the proper center coordinate to use for a ball, or
any system of particles is the center of mass.

Let’s start with two particles, a mass m1 at position r1 and m2 at position
r2. The total mass M ≡ m1 +m2. The center of mass rc is defined as

rc =
m1r1 +m2r2

M
(8.17)
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For N masses, using summation notation we can write

rc =

∑N
i=1 miri
∑N

i=1 mi

(8.18)

8.1.1 Example

Consider two heavy lead balls, each with mass 10 kg seperated by a distance of
a meter. Where is the center of mass of this system?

8.1.2 Solution

Let’s draw a diagram to see what’s going on:

0 .5 1x=

Define coordinates for this problem. Put the first mass m1 at the origin
r1 = 0, and put mass m2 at the coordinate r2 = (1, 0, 0). Let’s apply definition
Eq. 8.17. Note that the y and z coordinates of the center of mass are zero, the
only non-trivial one is the x coordinate. So in the x-direction

xc =
1× 0 + 1× 1

2
= 0.5m (8.19)

Note that if we made m1 much heavier than m2 than the center mass would
be shifted to the origin. If the converse where true, the center of mass would
be shifted towards m2. When they’re equal, the center of mass lies right in the
middle between the objects.

8.1.3 Neat trick for calculating center of mass

Suppose we’ve arduously calculated the center of mass of a system of 6 masses
m1, . . . ,m6. And now we want to include another 3 m7, . . . ,m9. Do we have
to redo the entire calculation? No! A little mathematical manipulation should
convince you that we can the calculations of the center of masses of masses
1-6 and 7-9. to calculate the center of mass of masses 1-9 . This is illustrated
pictorially in Fig. 8.1.

Call the center of mass of 1-6 r1−6. It has a total mass of M1−6. Similarly
call the center of mass of 7-9 r7−9. It has a total mass of M7−9. Then what
happens if we calculate the center of mass of these two “pseudo” particles? We
get

M1−6r1−6 +M7−9r7−9

M1−6 +M7−9
(8.20)
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Figure 8.1: Illustration of how to get the center of mass for 9 balls, given you
already know the center of mass of the first 6 and the remaining 3. Above you
see 6 balls in grey, and their center of mass is at the black “+” symbol. The
remaining 3 balls have their center of mass at the green “+” symbol. Below
you the center of mass for all 9 balls rc is the red “+” symbol. It’s obtained by
considering the total mass of the first 6 balls M1−6 to be concentrated at the
center of mass r1−6. And similarly for the remaining balls 7-9. The center of
mass of these two concentrated points gives you the center of mass of the entire
system of 9 balls.
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By plugging in the definitions of center of mass, you should be able see that you
get quite a few cancellations and finally convince yourself that this is equal to

m1r1 +m1r1 + · · ·+m9r9
m1 +m2 + . . .m9

(8.21)

which is just the center of mass of the complete 9 mass system.

8.2 Center of mass for a continuous bodies

What is the center of mass of a uniform sphere? That isn’t too bad. By symme-
try it’s at the sphere’s center. But what if the sphere is not of uniform density?
The top hemisphere is made out of balsa wood and the bottom hemisphere is
made out of roquefort cheese? That’s a bit more tricky, and to solve this sort of
problem, we’ll have to formulate it in terms of integration. Let’s start off with
the one dimensional case. Suppose that you have a rod that has a mass per unit
length λ(x) (that can vary with position x. We choose coordinates so that the
left hand side of the rod is at 0 and the right hand side is at L. To obtain the
center of mass, we break up the rod into millions of tiny section each of length
∆x. Then the center of mass is the sum of all the individual masses mi times
their corresponding position xi. So

xc =
m1x1 +m2x2 + · · ·+mNxN

m1 +m2 + · · ·+mN
(8.22)

Now one of these little masses mi = ∆xλ(xi) so

xc =
∆x
∑N

i=1 λ(xi)xi

∆x
∑N

i=1 λ(xi)
(8.23)

You might remember from calculus expressions of this kind. If we take the limit
as ∆x → 0 then these become integrals

xc =

∫ L

0
λ(x)xdx

∫ L

0
λ(x)dx

(8.24)

Since λ(x)dx = dm, an infinitessimal of mass, this integral can be more
elegantly, but less usefully written as

xc =

∫

xdm
∫

dm
(8.25)

Example

Let’s apply 8.24 to the case where the density of a rod varies linear with position,
that is, λ(x) = cx, where c is a constant that won’t make a difference to the final
answer. (If you are not familiar with integral calculus, an alternative solution
will be given later.)
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Solution

In this case we get

xc =

∫ L

0
(cx)xdx

∫ L

0
(cx)dx

(8.26)

The c’s cancel and we get

xc =
x3/3

∣

∣

∣

L

0

x2/2
∣

∣

∣

L

0

=
2

3
L (8.27)

As expected, the center mass is shifted for the middle towards the region of
higher density.

8.2.1 Higher dimensions

In two or three dimensions, we can perform the same kind of analysis to to
obtain the center of mass rc of a system

rc =

∫

rdm
∫

dm
(8.28)

This is now a multidimensional integral that needs to be performed.

Example

Let’s illustrate how this works for an icoscoles right triangle. (Again, a solution
without integration will be given later.) One corner is at the origin. The right
angled corner is at (L, 0) and the top 45 degree corner is at (L,L). The triangle
is taken to be of constant density σ. The triangle is shown in Figure 8.2.

x
L

L
y

Figure 8.2:
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Solution

We break up the integration into x and y directions. By symmetry if we get the
answer along the x direction, we can easily figure out what it should be along
the y direction. In fact it’s intuitively clear that the center of mass lies along
the red dashed line that goes 45 degrees through the right angled corner, as seen
in Figure 8.2.

So let’s get the answer for the x direction.

xc =

∫

xdm
∫

dm
=

∫ L

0

∫ x

0
xσdydx

∫ L

0

∫ x

0
σdydx

(8.29)

This means the following. As shown in Figure 8.3, e’ve divided up the integration
into vertical strips. We first integrate over y to find out the answer in one strip.
Then we integrate over all x to find the final answer, integrated over all strips.

x
L

L
y

dx

Figure 8.3:

Doing the top and bottom integrals over dy we have

xc =

∫ L

0
x2dx

∫ L

0
xdx

(8.30)

By complete chance, we just did this calculation for the one dimensional rod,
see Eq. 8.27. The answer was 2

3L. So we know the center of mass in the x
direction. The y-direction is almost the same problem, but slightly different.
In the x-direction, the triangle is becoming thicker with increasing x, in the y
direction it is becoming thinner with increasing y. So it makes sense just to say
the center of mass in the y direction is 2

3L from the thinner end. This means
it’s 1

3L from the thicker end, so it has coordinate yc = 1
3L.

Tricks like these save you from having to do tedious calculations. You can
do the integral the more complicated way if you’re unsure that this reasoning
is correct.
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x
L

L
y

1/3 L

2/3 L

As promised, the same result can be obtained without any calculus. In
Figure 8.2, the triangle is cut into four identical isoceles right angle triangles
by the red dashed line and the two blue dashed lines, with one of the triangles
being upside down. By symmetry, the distances from the x axis of the four
centers of mass are a, a, L/2−a and L/2+a for some (as yet) unknown a. Since
all the four triangles have the same size, the center of mass of their combination
will be at the average of all four centers, i.e. at y = a/2 + L/4. But the big
triangle is simply twice as big as each of the small triangles, and therefore this
distance must be equal to 2a. Therefore 2a = a/2 + L/4, i.e. a = L/6, and the
center of mass of the big triangle is at a distance 2a = L/3 from the x axis. The
distance from the y axis can be obtained by symmetry to be L − L/3 = 2L/3.
(It is easy to generalize this to an arbitrary triangle, since any triangle with its
base oriented horizontally can similarly be cut into four identical pieces.)

As a byproduct, we see that if we squeeze the triangle into a rod along the x
axis, with all the mass in a vertical slice dx (see Figure 8.3) moved down to the
x axis, we obtain a rod whose mass per unit length is λ(x) ∝ x, and its center
of mass is at x = 2/3L.

We got lucky with the triangle, being able to find its center of mass using
symmetry. For an irregular shape, doing integrals is the only way to find the
center of mass.

8.2.2 Gravitational potential energy of a body

An interesting application of the above formulas is in calculating the gravi-
tational potential energy of a body. Suppose you have a turnip and wish to
calculate its potential energy. Well for every atom i of mass mi in the turnip,
the potential energy, is just mig times the vertical position of the atom yi. To
get the total potential energy, we sum over all atoms:

U =
∑

i

migyi = g
∑

i

miyi (8.31)
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+

,

+

,

+

Figure 8.4:

By some fancy foot work we see this is

U = (

∑

i miyi
∑

i mi
)
∑

i

mi g (8.32)

But
∑

i mi is just the total mass Mt, and the term in parenthesis is just the
definition of the center of mass in the z-direction, yc. So finally we obtain the
simple formula:

U = Mtgyc (8.33)

In other words, to compute the potential energy of a turnip, we just have to
find its center of mass, and its total mass. If we replace the turnip with a point
of mass Mt located at the center of mass, it will have the same potential energy.

This gives us a nifty way to experimentally determine the center of mass.
Take the right icoscoles triangle we looked at earlier, see Eq. 8.2.1.

If we hang it from the right angled corner, the hypotenuse will lie horizon-
tally, see the first panel in Fig. 8.4.

Why? We can replace the triangle by the center of mass (the red spot), and
we’re hanging it from the top (the + symbol). A single mass will always dangle
vertically (dashed purple line) from where it’s being held, because it wants to
minimize its potential energy (i.e. height of the vertical component of the center
of mass).

We could also hang it from another corner and the same thing should happen.
The red spot should dangle vertically from the point its being held, see the
second panel in Fig. 8.4.

If we didn’t know where the center of mass was, this method would allow us
to determine its position. It’s just the intersection of the two purple lines as
shown in the third panel in Fig. 8.4.

This is a neat way of determining the center of mass of a body.
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8.3 F=ma revisited

We can differentiate Eq. 8.18 with respect to time.

drc
dt

=
d

dt

∑N
i=1 miri
∑N

i=1 mi

(8.34)

Since the m’s are constant, the differentiation only acts on the r’s, giving

drc
dt

=

∑N
i=1 mivi

M
(8.35)

or

vc =

∑N
i=1 mivi

M
= ptot/M (8.36)

This implies that if the momentum ptotis conserved, so is the velocity of the
center of mass vc.

So we have the equation

ptot = Mvc (8.37)

This says that the total momentum of a system is the same as when all the
mass is concentrated at one point, at the system’s center of mass!

If you can keep your eyes open a little longer, we can go further and differ-
entiate this again:

dptot
dt

= Mac (8.38)

So from 8.12 we finally have that

Fnet = Mac (8.39)

This says that the net force acting on an object is just the total mass times
the acceleration of the center of mass.

Didn’t we use this already? Isn’t this just Newton’s second law?
Yes, we did use this already! When analyzed blocks going down inclined

planes, which of course are non-particle-like objects. And we did apply F=ma
to them. But err, we shouldn’t have done this so cavlierly! Newton’s second
law really should have been defined for point objects. What we just showed is
that it also works for blocks, turnips, camels, or what ever system you care to
choose. You just have to use the total mass of the system for “m” and the center
of mass acceleration for ”a”. The force Fnet is the net external force acting the
object.

I could have gone through all this math a few chapters ago, but it wasn’t
really necessary to solve problems. I’m including this to show you why what
you did was OK. I also figured you might be in need of a good nap.

Now it’s time to wake up and do some more physics problems!
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8.3.1 Example

An astronaut of mass 80 kg drifts away from a spacecraft with a center of mass
velocty of 2 m/s. The astronaut is very silly and starts dancing, trying hard
to do the “hustle”. Describe the velocity of the center of mass as a function of
time.

Assume, as is usual in this situation that no external forces act on the
astronaut.

8.3.2 Solution

The momentum of the astronaut is conserved. So as you see from Eq. 8.37 that
the velocity of the center of mass of the astronaut is constant.

How can that be? If you’re out there in free space, you can certainly move
around, I’ve seen pictures of the space shuttle and things like that. So can’t
you change your velocity? Well you can change the velocity of your hand, or
your foot, but since total momentum is conserved, it can’t change, hence your
center of mass velocity will remain the same. If it starts out as 2 m/s, it’ll
stay that way. If it starts out as zero, it’ll stay that way too. If you have a
rocket pack and turn on the jet thrusters, you can change the velocity of your
center of mass, but this is compensated by the velocity of the gas ejected by the
jet thrusters; the center of mass of the ejected gas and you together moves at
constant veolocity.

8.3.3 Example

A bad guy of mass 100 kg has just robbed a bank and is carrying 200 kg of
gold bullion. The problem is that he’s inside of a stationary freight car with
nearly frictionless bearings, and the freight car is on the verge of a precipice as
pictured.

∆ x

L

If he tries to move to the left with his gold all the way to the door L = 30 ft
away, the freight car, which weighs Mf = 2700 kg will move to the right, very
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possibly far enough so that he’ll plunge with the car down the precipice. The
freight car has to move only 2 ft to the right for this to happen. Will he make
it to the door?

8.3.4 Solution

If the bearings are frictionless, the freight car plus robber has a conserved mo-
mentum of zero, meaning from Eq. 8.37 that the center of mass velocity is zero.
That implies that the center of mass xc is constant. The robber could be pound-
ing against the wall or running around in a violent rage, and this would not alter
the position of the center of mass of the complete system one iota. So if the
robber goes to the left, the freight car must go to the right to compensate.

Let’s then make use of center of mass conservation to solve the problem.
Let’s choose a coordinate system where the center of mass of the freight car
(right in its middle) is at the origin.

Initially the robber is at a distance xr = L/2, and the mass of robber plus
gold is Mrg = 300 kg.

The center of mass of the system is then

xc =
Mrgxr

Mrg +Mf
=

MrgL/2

Mrg +Mf
(8.40)

After moving to the door, the freight car has shifted an amount ∆x and
therefore the center of mass of the the car is now at ∆x. That’s what we’re
interested in finding. The position of the robber is now −L/2+∆x. The center
of mass is then

xc =
Mrg(−L/2 + ∆x) +Mf∆x

Mrg +Mf
(8.41)

Equating the center of mass before with the center of mass after the robber
has moved gives:

MrgL/2 = Mrg(−L/2 + ∆x) +Mf∆x (8.42)

Moving the first term on the right hand side to the left and factoring the
remaining terms of the right hand side gives

MrgL = ∆x(Mrg +Mf ) (8.43)

or

∆x =
Mrg

Mrg +Mf
L (8.44)

Plugging in numbers we have

∆x =
300 kg

300 kg + 2700 kg
30 ft = 3 ft. (8.45)

This is greater than 2 ft, so the robber would end up as fertilizer for some
weeds.
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8.3.5 Example continued

But is there a way for our poor robber to leave the freight car and become a
changed man? He promises to be a good boy, keep off the street and study
physics. What can we do to help him?

8.3.6 Solution

Perhaps leaving the gold at the right hand side of the freight car and walking
over to the door. How can we solve this problem without doing much more
work?

So the trick is to regard the gold as part of the freight car. Note that we didn’t
have to assume a symmetrical mass distribution for the freight car (try changing
its center of mass from L/2 to some other value, sayX, in the previous solution).
So this should work fine. Eqn. 8.44 should be changed a litte. Mrg is no longer
the combined mass of robber plus gold, since the robber is now separated from
the gold. This term should be Mrg. The denominator Mrg +Mf is altered two
ways. Mrg is reduced by the mass of the gold, but the mass of the freight car
Mf is increased by the same amount. So the denominator is unaltered.

We get then

∆x =
100kg

300kg + 2700kg
30ft = 1ft. (8.46)

So he’ll make it if he abandons the gold. Of course he could still take 100kg
of gold with him and get out alive, but we’re all honest citizens and won’t tell
him that. His new career as a physicist will be enough of a reward.

8.4 Collisions

Collisions are when two objects bang into each other. An example is when you
play pool. If you’re really good, you’ll be able to actually aim the stick well
enough so that the white ball hits another ball on the table. When that happens,
you get a collision. There are two extreme versions of collisions. Totally inelastic
collions, and elastic collisions.

Totally inelastic collisions are when the two objects that hit each other stay
in contact. Think about two pieces of chewing gum being thrown at each other
and sticking. On the other hand don’t. It’s too disgusting.

When a dropped superball hits the ground, it bounces up to almost its
original height. That’s the opposite case of an elastic collision. In both cases
the actual collision process is quite short. Often of the order of milliseconds.
We’ll try to understand the process of the collision now in a little more detail.

8.4.1 The Impulse

Suppose we look at a superball hitting a hard table with some high speed camera.
What will we see? Well, we’ll see the ball getting kind of smushed against the
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table. The more smushed, the greater the force the table exerts on the ball. So
like a brontosaurus, the normal force of the table starts off small, gets bigger,
and then gets smaller again.

So the external force acting on the superball, namely the normal force of the
table is some function of time pictured below.

F

t

Figure 8.5:

Now how do we relate this to the momentum? Let’s use Eq. 8.12.

F =
dp

dt
(8.47)

The time derivative of the momentum of the ball p is equal to the normal force
of the table F

You can think of this as saying that normal force of the table is decelerating
the ball, causing it to slow down, so the momentum decreases. Eventually the
ball completely changes direction because the force continues to act on the ball
even after it has become maximally squashed. So the ball accelerates away from
the wall until it looses contact with the table.

So if the normal force is responsible for the change in momentum, how is
the total change in momentum related to this force?

Well we just integrate Eq. 8.12 from the initial time of contact ti to the final
time of contact tf . This gives an expression for the change in momentum

∆p = p(tf )− p(ti) =

∫ tf

ti

F(t)dt (8.48)

This is just the area under the force curve pictured in figure 8.5, and is called
the “impulse”. We can get an idea of the magnitude of the force by calculating
the forced averaged over the interval from ti to tf .

F̄ =

∫ tf
ti

F(t)dt

tf − ti
(8.49)
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From the last equation this means

F̄ =
∆p

∆t
(8.50)

Ok, the derivation of this seemed like a lot of work, but the final result is
quite interesting. The average force felt during a collision is the ratio of the
change in momentum to the change in time.

So what happens if a collision is really fast? The average force during that
time will be really large. Let’s think about this in everyday life. When you drop
a glass on a tile surface it breaks, where as on a shag carpet it won’t even chip.
What’s the difference? About $10 if was a fancy glass like the kind my mom
likes to keep around (but never uses except for when they have “sophisticated”
company). But seriously, the difference is that the carpet “gives” more than
the tile. It’s softer. This means that the collision lasts a lot longer than on the
tile. So the average force will be quite a bit larger on the tile, causing the glass
to break.

With a lot of collisions, baseballs against bats, pool balls against each other,
glass against tile, and countless other situations, the time of the collision is very
short, of order milliseconds and the change in momentum is quite large. In this
case you get quite humongous forces during a collisions. Let’s do an estimate.
Assume a time of contact of 10−3 s a mass of 1 kg, and a change in velocity of
1 m/s. You get an average force of (1 kg × 1 m/s)/10−3 s which is 103 N. The
weight of a 1 kg mass is about 10 N, so that the force during the collision is 100
times greater than the force of gravity. No wonder people try to avoid getting
hit by baseball bats!

What that means is that during one of these fast collisions, you can ignore
the effect of gravity, friction, springs, or any other force acting. The collisional
force will exceed these other forces.

With this in mind, let’s discuss collisions in more detail.

8.4.2 Totally inelastic collisions

Bobby is cycling east at 5m/s, and Lisa is cycling north at 10m/s, when they
happen to run into each other, and not in a good way. They and their bikes get
all tangled up and start moving together. What’s the velocity of the Bobby-
Lisa-bicycle glob right after the collision? Let’s take the combined mass of
Bobby and his bike to be mB = 100kg and Lisa and her bike to be mL = 50kg.
(Don’t worry, Bobby and Lisa are quite fine. This is not a real example.)

To figure this out, we’ll use conservation of momentum, as we claimed that
to a good approximation, we can ignore other forces during the collision.

Before: The total momentum ptot = mBvB +mLvL

After: The ptot = (mB +mL)vf . where vf denotes the final velocity, right
after the collision.
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Equating these two expressions (since momentum is conserved) we have

vf =
mBvB +mLvL

mB +mL
(8.51)

Now vB = 5̂im/s and vL = 10ĵm/s so we get

vf =
100i× 5̂i+ 50× 10ĵ

150
m/s = 3.33(̂i+ ĵ)m/s (8.52)

The combined mass goes shooting off in the north-east direction.
This is an example of a totally inelastic collision. When the two masses hit,

they stick together. The final velocity is just the center of mass velocity of the
system, since the center of mass velocity is constant for any process obeying
conservation of momentum.

Momentum is conserved but in general, energy is not. You could calculate
the change in kinetic energy during this collision and would find that it is neg-
ative. What happens to this energy? It mostly goes into heat, some of it goes
into sound waves. The scrunching sound that you hear is powered by the initial
kinetic energy of our two unfortunate bicyclists, (who of course are not real).

8.4.3 Elastic collisions in one dimension

With elastic collisions, energy is also conserved. The only really good examples
of elastic collisions involve atomic particles and the like. But you can get pretty
close in ordinary life, say with pool balls or a superball.

Let’s say we start with two balls with masses m1 and m2 having initial
velocities vi1 and vi2 respectively. They collide and end up with velocities vf1

and vf2

vf2

vf1

v
i1 vi2

Before

After
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Before: The total momentum ptot = m1vi1 + m2vi2. The total energy is
E = 1

2m1v
2
i1 +

1
2m2v

2
i2.

After: The total momentum ptot = m1vf1 + m2vf2. The total energy is
E = 1

2m1v
2
f1 +

1
2m2v

2
f2.

Equating the total momentum and energy before and after the collision

m1vi1 +m2vi2 = m1vf1 +m2vf2 (8.53)

m1v
2
i1 +m2v

2
i2 = m1v

2
f1 +m2v

2
f2 (8.54)

Let’s try to analyze the collision of two balls in one dimension.
So now we just have to solve for the final velocities vf1 and vf2 and we’re

done. But how do you do that? One equation is linear and the other quadratic?
If you try to substitute one into the other, you get a big mess. You can get
around this by being a little clever, but there is a better way to think about all
this which gives you more physical insight into what’s going on with the physics
of this problem.

Center of mass reference frame

What we’ll do is change to a moving coordinate system, which goes with the
velocity of the center of mass! That’s sounds weird. It makes the problem sound
even harder. But actually you’ll see how simple things look in this frame.

Remember we said that if momentum is conserved, the center of mass veloc-
ity of the system vc is also. As the collision is taking place, it doesn’t alter the
motion of the center of mass a bit. It just plods along at a constant velocity. If
we were coasting along on a bike at this center of mass velocity, watching the
collision, what would we see?

Well in this reference frame, the center of mass velocity, by definition, is
zero. And therefore by Eq. 8.37 the total momentum is also zero. I’ll notate all
variables in this new system the same as the old, but just to remind ourselves
that we’re in this new frame I’ll also add “ ’ ” to them. So for example, the
initial momentum of the first particle is denoted p′i1.

So let’s play before and after again, but this time in the center of mass
reference frame.

Before: The total momentum p′tot = 0 = p′i1 + p′i2. The total energy is

E′ = 1
2m1

p′
2
i1 +

1
2m2

p′
2
i2.

After: The total momentum p′tot = 0 = p′f1 + p′f2. The total energy is

E′ = 1
2m1

p′
2
f1 +

1
2m2

p′
2
f2.

This looks a lot simpler. The momentum equations say that the particles
have equal and opposite momenta, p′i1 = −p′i2 and p′f1 = −p′f2 Using this,
equating energy is almost as easy

p′
2
i1/m1 + p′

2
i1/m2 = p′

2
f1/m1 +

1

2
p′

2
f1/m2 (8.55)
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Factoring the masses and cancelling gives p′
2
i1 = p′

2
f1. There are two

solutions to this. One is kind of boring, p′i1 = p′f1. It means that before
and after, nothing changes. This certainly obeys conservation of energy and
momentum, but means that the particles haven’t bounced off each other. So
what’s the other more interesting solution? It’s p′i1 = −p′f1. From conservation
of momentum, that means p′i2 = − p′f2. In terms of velocity this gives

v′i1 = − v′f1 (8.56)

v′i2 = − v′f2 (8.57)

This says that after the collision, the two balls have reversed their initial
velocities. That’s it. This satisfies both momentum and energy conservation.

Back to the old frame

What did going to the center of mass velocity frame do for us? It told us the
two balls reverse their velocties in that particular frame. But we want to know
what happens in our original frame. Can we express what we just learned in a
way that’ll help us solve our original problem?

If we ask what happens to the difference in velocities before and after the
collision, that’ll tell us something independent of reference frame. The difference
in the velocity of the two balls is always the same irrespective of frame. So what
happens to the difference in velocities?

In the center of mass frame we see from Eq. 8.57 that v′i1 − v′i2 = − (v′f1 −
v′f2). But as was just stated, this is true in our original frame

vi1 − vi2 = − (vf1 − vf2) (8.58)

That is, the difference in velocities just reverse sign after the collision. You
could also say that for any one dimensional elastic collision, the relative velocity
of approach equals the relative velocity of recession. This is true in any reference
frame. This equation is nice because it’s linear. It is key to figuring out 1d
problems with elastic collisions.

So we now have two linear equations that we have to solve

m1vi1 +m2vi2 = m1vf1 +m2vf2 (8.59)

vi1 − vi2 = vf2 − vf1 (8.60)

Multiply the second equation bym1, and add it to the first equation to eliminate
vf1

m1vi1 +m2vi2 +m1vi1 −m1vi2 = (m1 +m2)vf2 (8.61)

Solving for vf2

vf2 =
2m1

m1 +m2
vi1 +

m2 −m1

m1 +m2
vi2 (8.62)

We can get vf1 most easily by interchanging the indices 1 and 2

vf1 =
2m2

m1 +m2
vi2 +

m1 −m2

m1 +m2
vi1 (8.63)

Let’s do a couple of examples now.
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8.4.4 Example

A 1000 kg lead ball traveling at 1 m/s hits a .01 kg superball that is at rest.
Calculate the final velocity of the two objects after the collision, if it is elastic.

8.4.5 Solution

In this example we have vi1 = 1 m/s, m1 = 1000 kg, vi2 = 0 and m2 = 0.01 kg.
Plugging these into Eqs. 8.62 and 8.63 we have to a good approximation

vf2 =
2

1
1 m/s + 0 = 2 m/s (8.64)

and

vf1 = 1 m/s (8.65)

So what does this say? The heavy ball keeps on going pretty much with its
same initial velocity. That’s not too surprising. However the lighter ball gets
propelled to twice the initial velocity of the heavy ball. That might seem a but
unexpected, but you can understand this by going to the reference frame of the
heavy ball.

In this frame the heavy ball sees this piddling little ball coming towards it at
1 m/s and then bounces off it. The lighter ball will reverse it’s velocity traveling
away at 1 m/s. But the heavy ball will just keep on truckin, its velocity hardly
altering due to the collision. Now let’s look back in the reference frame of the
ground. If you add up the 1 m/s of the heavy ball to the 1 m/s of the lighter
ball relative to the heavy ball, you get 2 m/s.

8.4.6 Example

Consider a block going towards a mobile hump. Mobile hump? Is this getting
esoteric or what! Well, look why not? This could be an oddly shaped piece of
ice that slides friction-free on a surface. See the figure below.

Maximum height

Initial

Final
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Let’s suppose the block and the hump have the same mass m and that the
block, pictured in red, starts off with a velocity vi = 1 m/s towards the hump
which is initially stationary. The hump is of height 1 m.

a How far will the block rise?

b At that point, what is the velocity of the hump and the block?

c What is velocity of the hump and block after the block slides down again?

8.4.7 Solution

First of all, it might rise all the way to the top and back down the other side!
We don’t know that yet. Let’s assume that it doesn’t get all the way to the top
and solve for what height we get. If this is greater than 1 m, then we know that
it get’s to the other side.

So what is the physics at the point where the block reaches it’s maximum
height. Well in the reference frame of the hump, the block rises up it and comes
to a maximum as pictured above. At this point the block is stationary relative
to the hump. That means that at this point, the block and the hump have the
same velocity. We already considered this type of problem earlier! It’s identical
to the problem of inelastic collisions. The velocity in this case is just the center
of mass velocity of the system which by Eq. 8.37 is

vc = ptot/M = (mvi/2m) = vi/2 = 0.5 m/s (8.66)

This is the answer to part b of the problem.
At that point the total kinetic energy of the system is

Kc =
1

2
mv2c +

1

2
mv2c = m(

vi
2
)2 = m

v2i
4

(8.67)

The inital kinetic energy was just 1
2mv2i , so the difference in these two kinetic

energies must be the potential energy mgh (by conservation of energy).
Therefore

mgh = Ki −Kc = m
v2i
2

−m
v2i
4

(8.68)

or

h =
v2i
4g

=
1

9.81
m = 0.102 m (8.69)

This is less than a meter so the block doesn’t go over the top. This is the answer
to part a of the problem.

Now how do we figure out c? We know that momentum is conserved and
energy is conserved, so we this is an example of an elastic collision. Even though
it is a little bizarre, it is a collision nevertheless.

So we can use our painfully derived formulae Eqs. 8.62 and 8.63 to calculate
the final velocities of the objects. In this case m1 = m2, vi1 = vi and vi2 = 0.



108 CHAPTER 8. MOMENTUM

Plugging these in, we see that vf1 = 0, and vf2 = vi = 1 m/s. So the block
stops completely and the hump moves off with a velocity of 1 m/s.

Notice how fiendishly difficult this problem would have
been to solve using F=ma!

We could have solved this whole problem starting from Newton’s three laws
of motion. It would have been much much harder. Although conservation of
momentum and energy are a consequence of Newton’s laws, for many questions,
they provide much insight to what’s going on. You shouldn’t forget however that
they are a consequence of Newton’s laws. They contain no extra information.

8.4.8 Elastic collisions in two dimensions

Now let’s figure out what happens when objects collide elastically in higher
dimension. Two should be enough for us don’t you think? Let’s ask what we
can learn from Eqs. 8.54, which are the equations for energy and momentum
conservation. If we’re given the initial velocities of the two objects before impact,
we’d like to know what they’r velocities are after the collision. That’s what we’d
like but I’m afraid we’re not going to be able to get those completely. What???
How can that be? In one dimension, we saw that applying these equations gave
you the final velocities, so what’s going wrong?

Well we applied Newton’s laws directly, we’re certain to get the complete tra-
jectory of the particles, before, during, and after the collision. But that’s quite
tough. Instead we’re using conservation laws. However even though conserva-
tion laws are derived from Newton’s laws, they aren’t equivalent. In general they
contain less information so we shouldn’t be surprised if they give an incomplete
description of what’s going on.

So back to the problem at hand. If we want the final velocities of the
objects, that means we want to know four quantities since each velocity has
both a magnitude and a direction that we wish to know. The problem is that
we have only three equations. (It’s three equations because the momentum
equation is a vector equation, so each component is an equation in its own
right. Two components means two equations.) So we have four unknowns and
three equations. So we don’t have enough equations to find the final velocities.

Does that make sense physically? Sure! If two balls collide with each other,
they go off in different directions depending on how they collide. Think about
playing pool. Depending on where the moving ball hits the stationary one, it
goes off in a different direction. So without more detailed knowledge of the
situation, it makes sense that we aren’t going to know what the outcome of the
collision will be.

Let’s consider a particular case, where the masses of the balls are equal
m1 = m2 = m. Let’s also take mass m2 to be initially stationary, that is
v2i = 0.

Then cancelling out the m’s Eqs. 8.54 become

vi1 = vf1 + vf2 (8.70)

v2i1 = v2f1 + v2f2 (8.71)
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v
i1

Before After vf2

vf1

The first equation says the vector sum of the final velocities is the initial
veloicity. If you represent the two final velocity vectors vf1 and vf2 as the sides
of a triangle, then vi1 will be the hypotenuse. The second equation looks kind
of like the Pythagorean theorem. What kind of triangle obeys this theorem? A
right triangle. So this says that vf1 and vf2 are perpendicular!

v
i1

vf2 vf1

If you don’t follow this reasoning you can get the same result by taking
vi1 = vf1 + vf2 and squaring it

v2
i1 = vi1 · vi1 = v2f1 + v2f2 + 2vf1 · vf2 (8.72)

Subtracting v2i1 = v2f1 + v2f2 gives vf1 · vf2 = 0. So the final velocities are
perpendicular.

So you can see the momentum and energy conservation imply an interesting
result. Of course we still don’t know what final direction the balls will be
traveling in, because you need more information, i.e. precisely where they hit
each other. However we do know that they’ll always be going off perpendicular
to each other.

8.5 Rockets

We’ve all seen majestic pictures of big rockets blasting off from the Earth, burn-
ing millions of dollars a second, and carrying interesting payloads into space,
such as experiments on how spiders build webs in space. Fascinating.

But there are some general things about this picture that might strike you
as odd. One is that payloads are pretty small. Also, the size of these big rockets
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is absolutely enormous. Is there a reason for this? Yes I know what you’re
thinking: it’s girls and boys playing with their toys. But no, that’s not the
only reason. They’re big because they have to be. We’re now in a position to
understand rockets, and you’ll see why this happens.

What is a rocket? It’s this thing that spews out lots of fuel at high velocity.
The expulsion of fuel speeds up the rocket. The more fuel expelled, the faster
the thing goes. We want to know how fast the rocket will be going after the
total mass of the rocket has been reduced from it’s initial mass Mi to its final
mass Mf . This will clearly have to depend on the velocity that fuel is expelled
at. Let’s call that U .

Let’s try to understand this with a simple low tech example. A small child
called Cindy sits on top of her little red wagon loaded up with a huge pile of
bricks. She’s a strong girl and can hurl a large number of these out in one go.

Suppose she starts at rest with 128 bricks each weighing 1 kg. We’ll ignore
Cindy and the wagon’s mass. She hurls out 64 of these bricks, with velocity of
U = 1 m/s. What will be the final velocity of the wagon?

Well the initial momentum was zero, so assuming a frictionless wagon, the
final momentum must be the same. So if half the bricks are travelling to the
left at 1 m/s the other half must be travelling to the right at the same speed,
1 m/s.

OK, now they’re 64 bricks left in the wagon. Cindy hurls out half of these,
again with the same velocity relative to her. Now what will the final velocity
of the wagon be? To figure this out, go to the reference frame of the wagon,
which was initially travelling at 1 m/s. In this frame, it looks like the initial
problem, where the wagon was stationary, but with 64 bricks inside it. After 32
bricks are hurled, by the same reasoning as before, the wagon will be going an
additional 1 m/s, so that relative to the ground the wagon is going 2 m/s.
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Now let’s ask what happens when Cindy again hurls out half of these 32
bricks, at the same velocity she did before. Going to to a reference frame of
2 m/s. we see as we did before, that the wagon will be going 1 m/s faster than
before.

You get the idea. Every time half the mass is thrown out, the velocity
increases by 1 m/s. So if the mass decreases by 2n, the velocity will increase by
n m/s. In this case there is a logarithmic dependence of mass on velocity. You
can check that the final velocity

vf = Ulog2(Mi/Mf ) (8.73)

Here U is 1 m/s, and Mi/Mf is the ratio of initial to final masses. What
does this say? It’s pretty hard to speed up a rocket. If you want the speed to
go up by U , you have to expel half half your mass. We can rewrite the above
equation as

Mi = Mf2
vf/U (8.74)

So if you have a payload of mass Mf , the amount of mass you have to start
with, depends exponentially on the final velocity. Exponentials are very rapidly
increasing functions. So your initial mass normally has to be very large.

Now that we understand this simplified problem, we can ask what happens
in a real rocket. Now we don’t have a little girl hurling bricks, but a rocket called
Cindy. Cindy expels fuel at a velocity −U (to the left), but does so continuously,
not in the punctuated way we just analyzed. So initially, we choose a reference
frame where the rocket is at rest. What happens after it expels a little fuel
of mass dM? The initial mass of the rocket is M . After expulsion, the mass
will have gone down to M − dM . Let’s call the increase in velocity dv. So
conservation of momentum says that

−dM U + (M − dM) dv = 0 (8.75)

This says that the velocty after this is

dv =
dM

M − dM
U (8.76)

Since dM << M (formally its an infinitessimal, we can safely ignore it in the
denominator. So we get the equation

dv =
dM

M
U (8.77)

This is the increase in velocity after a very short time. If we now add up all
these velocity increases, we’d formally be integrating the left hand side:

v =

∫

dv =

∫

dM

M
U = U lnM + const. (8.78)

Alternatively, we can treat this as an inspired guess and verify that d lnM/dM =
1/M, i.e. d(lnM) = dM/M, confirming that the previous equation is satisfied.
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The constant is fixed by requiring that v = 0 when M = Mi, so that

vf = U ln
Mi

Mf
(8.79)

This is almost the same form as our previous analysis except now we get a
logarithm base e instead of base 2. Qualitatively, it acts the same way.

We can obtain the same result without calculus. Suppose Cindy expels a
fraction f of the present mass of the rocket (including fuel), at a velocity U.
Then −fMU + (1− f)M∆v = 0, i.e.

∆v =
f

1− f
U. (8.80)

Repeating this process N times, the mass of the rocket is reduced by a factor of
(1− f)N , and the velocity is increased by NfU/(1− f). Taking the limit f → 0
with Nf held constant, vf = U(Nf) and Mf = exp[−(Nf)]Mi. Therefore
ln(Mi/Mf ) = vf/U.



Chapter 9

Rotational Motion of Rigid

Bodies

Rotational motion is very common. Spinning objects like tops, wheels, balls and
pianos are all examples of rotational motion that we would like to understand.
We’ll concentrate on rotation of rigid bodies, so keep in mind that what we say
does not apply to jellyfish.

9.1 Basic quantities

So if you have a rigid body, say a wheel, how do you describe the position of
various points? The wheel rotates about some fixed axis. Points on the axis
don’t move but points off axis do. A point on the wheel can be described as
being some distance r from the axis. If you watch it as it rotates, you see that
this point moves along the arc of a circle (Fig. 9.1). If the wheel rotates by an
angle θ (measured in radians), the arc is of length

s = θr. (9.1)

Is this right? Think about a few case. If θ = 2π, you get s = 2πr which
is the circumference of a circle. If θ = π, you get half the circumference. So it
makes sense.

So we now know how to relate the distance traveled by a point on the wheel,
to how much it rotated.

Now let’s introduce another concept, the angular velocity. This is the rate
the angle θ changes with time. In other words, how fast the wheel is spinning.
Suppose the wheel rotates one revolution in a second. That means it rotates
2π radians in a second. The average angular velocity over this time interval is
2π rad/s. So in general, we can define the average angular velocity as

ω̄ =
∆θ

∆t
(9.2)

113
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s = r θ
θ

Figure 9.1:

This is similar to the definition of average velocity, except in that case you
were concerned with distance traveled, not angle. In analogy with regular ve-
locity, we can write the instantaneous angular velocity as

ω =
dθ

dt
(9.3)

As we mentioned in our discussion on circular motion, the angle θ is measured
in radians and ω has units of rad/s or (since radians are really dimensionless
s−1).

We can define angular acceleration in analogy to acceleration, the average
acceleration being

ᾱ =
∆ω

∆t
, (9.4)

and the instantaneous angular acceleration as

α =
dω

dt
(9.5)

How do we relate the the velocity of a point to its angular velocity? Well
the distance traveled is s = rθ, so the speed of the point

v =
ds

dt
=

d rθ

dt
= r

dθ

dt
(9.6)

or
v = ωr (9.7)

The direction of velocity is along a circular arc. That was pretty straigh-
forward, and we’ve talked about this before. What’s a little trickier is the
acceleration.
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Remember the centripetal acceleration. Even when the wheel is rotating at
constant speed, a point at radius r feels a radial acceleration ar = v2/r = ω2r.
But what if the angular velocity of the wheel is changing? Then there’s also a
tangential acceleration in the direction of the velocity

at =
dv

dt
=

drω

dt
= rα (9.8)

This is perpendicular to the centripetal acceleration, and the two accelera-
tions when combined (in vector form) give the total acceleration of a point on
the wheel.

9.1.1 Example

A potter’s wheel starts of at rest but after a second is going 10 rad/s. What is
the average angular acceleration of the wheel?

Solution

Using Eq. 9.4 we have

ᾱ =
∆ω

∆t
=

10 rad/s

1 s
= 10 rad/s2 (9.9)

9.2 Constant angular acceleration

Now we can, understand the motion of a wheel with constant angular accelera-
tion α.

The math of this is identical to one dimensional kinematics with constant
acceleration. So we can just crib what we did before changing the name of
variables. With one dimensional motion you’ve got

v =
dx

dt
(9.10)

a =
dv

dt
(9.11)

So lets change variable names:

x → θ (9.12)

v → ω (9.13)

a → α (9.14)

With these name changes we get the back the same equations we just defined
above namely

ω =
dθ

dt
(9.15)

α =
dω

dt
(9.16)
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So rotation with constant angular acceleration α is mathematically the same
as motion with constant acceleration a. Doing the naming substitution we have

ω = αt+ ω0 (9.17)

θ =
1

2
αt2 + ω0t+ θ0 (9.18)

θ =
1

2
(ω + ω0)t+ θ0 (9.19)

ω2 − ω0
2 = 2α(θ − θ0) (9.20)

9.2.1 Example

A fan starts off at rest but after two complete rotations is going at 10 revolutions
per second. What is the angular acceleration of the wheel? Assume that the
angular acceleration is constant.

Solution

Let’s note the units given for ω, it’s in revolutions per second. But we want
to work in radians. So we should first do the appropriate conversion using
1 rev = 2π rad:

10 rev/s = 10 2π rad/s = 20π rad/s (9.21)

Our problem gives the initial and final angular velocity, and the number of
revolutions that the fan rotated. That looks like a job for Eq. 9.20. Setting
ω0 = 0 and solving for α we have

α =
ω2

2(θ − θ0)
=

(20π)2

4π
= 100π rad/s2 ≈ 314 rad/s2 (9.22)

9.3 Rotational Kinetic Energy

A “flywheel” is a device that spins around real fast on an almost frictionless
bearing so that it can maintain a high angular velocity. The velocity at the tips
of the flywheel can be really high and so the kinetic energy of the system can
be quite enormous. This device is used to store energy. It’d be nice to be able
to figure out the total kinetic energy of a flywheel as a function of its angular
velocity, its mass and its shape. So let’s try to figure out the kinetic energy in
a rotating rigid body.

The way we’re solve this problem is to divide and conquer. We know what
the kinetic energy of a point particle of mass m moving at velocity v. It’s 1

2mv2.
Now what we have is a collection of particles. For N particles, the kinetic energy
K is

K =

N
∑

i=1

1

2
miv

2
i (9.23)
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but now the velocities of each particles are related because they’re part of the
same rigid body, vi = ωri. ri is the the distance between a point on the body
and the axis of rotation. Plugging this in we have

K =
N
∑

i

1

2
mi(ωri)

2 =
1

2

(

N
∑

i=1

miri
2

)

ω2. (9.24)

The term in the parentheses is called the “moment of inertia”

I =

N
∑

i=1

miri
2 (9.25)

It doesn’t depend on the angular velocity of the object, but just the masses
that it’s made up of, and their distance away from the axis of rotation. It might
be complicated to compute, and we’ll discuss what it is for some simple shapes
pretty soon. It’s useful in rotational dynamics because it plays the same role
that we’ve seen mass plays in our previous studies of dynamics. In terms of the
moment of inertia the kinetic energy is

K =
1

2
Iω2. (9.26)

If we replace I by m and ω by v we get the good old formula K = 1
2mv2.

So we can add this to our list of equations (Eqs. 9.17-9.20) that are similar
to what we’ve already seen, but with a few name changes.

9.3.1 Example

We have four masses of 1kg that lie at the coordinates

r1 = 1m î, r2 = − 1m î, r3 = 1m ĵ, r4 = − 1m ĵ (9.27)

Calculate the kinetic energy when the object spins at 1rad/s. around

(a) The x axis.

(b) The y axis.

(z) The z axis.

Solution

Let’s compute the moment of inertia of the object for all three cases.
For (a), masses 1 and 2 are zero distance from the axis of rotation, but

masses 3 and 4 are both at a distance of 1m, so the moment of inertia is

I = (1 kg 02 + 1 kg 02 + 1 kg (1 m)2 + 1 kg (1 m)2) = 2 kg m2 (9.28)
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x

y

(a)

(b)

z

Therefore the kinetic energy is

K =
1

2
Iω2 =

1

2
2 kg m2(1 rad/s)2 = 1 J (9.29)

Notice that the radians in ω, although shown for clarity, are really dimensionless,
and are dropped at the next step when we use 1 kg m2 s−2 = 1 J.

For (b) we notice that it’s really the same situation as (a) but with a rela-
beling of the axis. So we get the same answer.

(c) has all the masses at a distane 1m from the axis of rotation so we get

I = (1 kg (1 m)2+1 kg (1 m)2+1 kg (1 m)2+1 kg (1 m)2) = 4 kg m2 (9.30)

Therefore the kinetic energy is

K =
1

2
Iω2 =

1

2
4 kg m2(1 rad/s)2 = 2 J (9.31)

9.4 The moment of inertia for continuous bodies

This section is similar to the calculation of the center of mass for a continuous
body, so I won’t repeat all the boring steps. You can easily fill those in if you
understand how to do multiple integration and you understand how to get the
formula for the center of mass of a continuous body.

If you have a continuous object with a density that varies with position ρ(r),
then you can write the formula for the moment of inertia as

I =

∫

r2dm (9.32)
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A less mysterious way of writing this is

I =

∫

r2ρ(r)d3r (9.33)

Let’s examine what the formula says.

1. The integral is like a sum over a lot of tiny little cubes. We divide the
object into little cubes of volume d3r and sum up the moment of inertia
dI of all the cubes I =

∫

dI.

2. The moment of inertia dI of each cube is just the mass in that volume
dm times r2 where r is the distance away from the axis of rotation. Don’t
confuse this r with the distance away from some point. It’s the distance
away from the axis of rotation. That is the shortest distance between the
point and the axis of rotation, just like in the last example. For instance,
if the axis of rotation is the x-axis, then r2 for a mass at r0 is y20 + z20 , not
x2
0 + y20 + z20 . So we have dI = r2dm.

3. dm can be written in terms of the density dm = ρ(r)d3r.

Let’s now to some examples.

9.4.1 Example of a ring

Suppose we have something like a hoola hoop, that is a thin hoop or ring that
rotates about the central axis perpendicular to the hoop. What’s the moment
of inertia in terms of the total mass M of the hoop and its radius R?

9.4.2 Solution

This problem is so simple, we can think about it in terms of discrete masses.

I =
∑

i

mir
2
i (9.34)

but all the ri’s are the same and equal to R. So we can factor out the radii,

I = R2
∑

i

mi (9.35)

But
∑

mi is just the total mass M . Therefore

Ihoop = MR2 (9.36)

9.4.3 Example of a disk

Now we know the moment of inertia of a ring, let’s calculate what it is for a
disk of uniform density that rotates about the central axis perpendicular to the
disk. Call the total mass of the disk M , and its radius R.
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9.4.4 Solution

The trick here is to think of the disk as a collection of a bunch of concentric
rings. Call the mass per unit area of the disk σ. Then we have a bunch of rings,
the inner radius of one of these rings is r and outer radius r + dr.

r+dr
r

R

Then the mass of this ring dm is the surface dA times σ. So

dm = σdA . (9.37)

But dA is just the circumference times dr, dA = 2πr dr. So

dI = dmr2 = σ2πr dr r2 (9.38)

Now we want to integrate dI over all radii to get I so

I =

∫ R

0

dI =

∫ R

0

σ2πr r2 dr = σ2π

∫ R

0

r3dr = σ2π
R4

4
(9.39)

Let’s write σ in terms of M and R:

σ =
M

πR2
(9.40)

So finally we get

Idisk =
1

2
MR2 (9.41)

You can get the same result indirectly, using only differentiation, if you are
not familiar with integration. By considering the units of different quantities,
it is clear that I ∝ σR4. We write this as I = aσR4. If R is increased to
R + dR, the moment of inertia is increased by 4aσR3dR. But increasing R
is equivalent to adding a hoop just outside the original disk, with a moment
of inertia (σ2πRdR)R2. Equating the two, we see that a = π/2, so that I =
1
2 (πσR

2)R2 = 1
2MR2.



9.4. THE MOMENT OF INERTIA FOR CONTINUOUS BODIES 121

9.4.5 Example of a spherical shell

Calculate the moment of inertia of a spherical shell of mass M and radius R
that rotates through an axis that goes throught the center of the sphere.

9.4.6 Solution

So now that you’ve seen how to make a disk out of a bunch of hoops, we could
instead make a spherical shell out of a bunch of then also. It’s kind of like a
technique in pottery where you slowly add little rings of clay of different sizes,
until you have a beautiful vase! Oh shut up!

So we can do that here too. Pottery and physics meet. On the other hand I
was never good much at pottery. You get the size of a ring off by a factor of two
and it ends up looking like a moldy lump of clay. The same is true of the math
involved in this example. I could go through and do it, but it’s a bit tedious.
There’s a much much more elegant way of calculating the moment of inertia in
this example. It requires you to think a lot more, but it requires you to write a
lot less.

It uses the symmetry of sphere. Let’s write things out in terms of discrete
masses because it’s easier to understand

I =
∑

i

mir
2
i (9.42)

If we rotate about the z axis, then ri is the distance between the point and the
z axis, so r2i = x2

i + y2i . So

I =
∑

i

mix
2
i +miy

2
i (9.43)

We could instead compute what I’ll call Ix

Ix =
∑

i

mix
2
i (9.44)

or
Iy =

∑

i

miy
2
i (9.45)

Because of the symmetry of a sphere we can replace x by y and nothing
should change so

Ix = Iy (9.46)

I could also calcluate
Iz =

∑

i

miz
2
i (9.47)

That should also be the same as Ix, again because of symmetry. There is nothing
special about the choice of axis. We could call x y, y z, and z x, and we’d get
the same answers.
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Now lets calculate 3Ix = Ix + Iy + Iz. That’s
∑

i

mix
2
i +

∑

i

miy
2
i +

∑

i

miz
2
i =

∑

i

mi(x
2
i + y2i + z2i ) (9.48)

But since we have a sphere, we know that x2
i + y2i + z2i = R2. So we can pull

that out of the sum and then we just have a sum over the mi’s which just equals
M . So 3Ix = MR2. But I = Ix + Iy = 2Ix. So

Ishell =
2

3
MR2 (9.49)

9.4.7 Example of a solid sphere

What’s the moment of inertia of a solid sphere through an axis that passes
through its center? The sphere is of uniform density.

9.4.8 Solution

Now we have the moment of inertia of a spherical shell, we can sum up all these
shells to get what it is for solid sphere. This is a lot like the example of the disk.

So what’s the mass dm of a shell of inner radius r and outer radius r + dr?
Call the density ρ. Then dm = ρdV . What’s the volume dV ? It’s the surface
area of a sphere of radius r times dr. The surface area of a sphere is 4πr2 so

dm = ρ4πr2dr (9.50)

And from the last example, that dI = (2/3) dm r2. So the moment of inertia
is

I =

∫

dI =

∫

2

3
dmr2 =

∫ R

0

2

3
(ρ4πr2)drr2 =

2

3
ρ4π

∫ R

0

r4dr =
2

3
4πρ

R5

5
(9.51)

Let’s write ρ in terms of the M and R. The volume a sphere is 4
3πR

3, so

ρ =
M

4
3πR

3
(9.52)

Plugging that in to the formula for I

I =
2

3
4π

M
4
3πR

3

R5

5
(9.53)

or

Isphere =
2

5
MR2 (9.54)

As with the disk, we can obtain the same result indirectly, without integra-
tion. Considering the units of various quantities, I = aρR5, where a is some
(unknown) constant. If the radius of the sphere is increased by dR, the mo-
ment of inertia is increased by 5aρR4dR. The moment of inertia of the added
spherical shell is 2

3 (4πρR
2dR)R2. Equating the two, we obtain a = 8π/15, and

the moment of inertia of the sphere is 2
5 (4πρR

3/3)R2 = 2
5MR2, which is the

expression we just obtained.
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9.5 Cool Theorems about I

We’ve now seen quite a few examples of the moment of inertia for a lot of
different objects. But notice we have to specify the axis of rotation. If we
change the axis, in general so will the moment of inertia. It’d be nice if we
didn’t have to recompute the moment of inertia every time we chose a different
axis. For example, a disk has a moment of inertia of 1

2MR2 through an axis
going through the center and perpendicular to the disk. What if the axis was
still perpendicular but didn’t go through the center? What if the axis went
throught the center but was in the plane of the disk? How would you figure out
these cases?

Fortunately we can do these problems without much extra effort thanks to
two cool theorems, the perpendicular axis theorem and the parallel axis theorem.

9.5.1 Parallel axis theorem

Suppose we know the moment of inertia when the axis goes through the center
of mass in a certain direction. Call it Icm. If this axis is displaced by a distance
d but is still parallel to the original axis, then the moment of inertia through
this axis is

I = Md2 + Icm (9.55)

where M is the mass of the object.

d

Icm

I
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9.5.2 Proof:

Say the object is composed of N pieces with masses m1, . . . ,mN . Call the dis-
placment vectors between these pieces and the axis distances r1, . . . , rN between
the pieces and the axis, then

Icm =

N
∑

i=1

mir
2
i (9.56)

When the axis is displaced by a vector d, then we want to compute

I =

N
∑

i=1

mir
′

i
2

(9.57)

where r′i is the displacment vectors between these pieces and the new axis.

Let’s relate the r′i to ri

r′ = r+ d (9.58)

And since r2 = r · r (dropping the subscript for convenience)

r′
2

= (r+ d) · (r+ d) = r2 + d2 + 2d · r (9.59)

Now plugging this into 9.57 we have

I =

N
∑

i=1

mir
2
i + (

N
∑

i=1

mi)d
2 + 2d ·

N
∑

i=1

miri (9.60)

The last term contains
∑N

i=1 miri. Dividing this by M , this would be rc,
the location of the center of mass projected into the plane perpendicular to the
axis. Since the axis passes through the center of mass, by definition, this must
be zero. That is, if you calculate the position of the center of mass of an object
when the origin of the coordinate system is the center of mass, you get zero. So
we only have the first two terms in the above equation, and we get Eq. 9.55.

9.5.3 Perpendicular axis theorem

Suppose you have planar object, that is, one that is flat. An example of this is
a floppy disk, or a cdrom. Suppose the object is in the x-y plane. If you rotate
it the z axis, the moment of inertia is Iz. If you rotate it by the x or y axes, the
moment of inertia is Ix, or Iy respectively. Then

Iz = Ix + Iy (9.61)
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I
z

Ix

Iy

9.5.4 Proof:

It’s a lot like the last proof.

Iz =

N
∑

i=1

mir
2
i =

N
∑

i=1

mi(x
2
i + y2i ) (9.62)

But because the object is planar

Ix =

N
∑

i=1

miy
2
i (9.63)

and

Iy =

N
∑

i=1

mix
2
i (9.64)

Combining these we obtain Eq. 9.61.

9.5.5 Example of spinning coin

What is the moment of inertia of a coin that you set spinning on a table? It
spins through an axis in the plane of the coin. Treat the coin as a flat uniform
disk of radius R and mass M .

9.5.6 Solution

If we put the disk in the x-y plane, then we saw that Iz = 1
2MR2. We want

to know the answer when spun around the x axis Ix. That should be the same
as Iy. So using the parallel axis theorem, Eqn. 9.61, we have that 2Ix = Iz.
Therefore Ix = 1

4MR2.
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9.5.7 Example of an off center sphere

What is moment of inertia of a solid sphere of radius of R that we set rotating
about an axis that just touches its surface? Take the mass the be M .

9.5.8 Solution

We use the parallel axis theorem, Eq. 9.55. Here the axis has been shifted by
the radius of the sphere so d = R, and we already saw in example 9.4.7 that
Icm = 2

5MR2. So

I =
2

5
MR2 +MR2 =

7

5
MR2 (9.65)

9.5.9 Example of a rod

What’s the moment of inertia of a uniform rod rotated about an axis perpen-
dicular to the rod going through the middle. Take the length of the rod to be
L and the mass to be M .

9.5.10 Solution

You can get the moment of inertia of a uniform rod by integration and we did for
a solid disk, but let’s do it in a more tricky way using the parallel axis theorem.
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It’s neat because it doesn’t take much calculation, but you have to think about
the problem!

We’ve seen a lot of examples, and we know the final answer has to be of the
form

Icm = C M L2 (9.66)

where we want to determine C. What if we rotate the rod about an end
intead? Then the parallel axis theorem tells us that

Iend = Icm +M(
L

2
)2 = C M L2 +

1

4
ML2 (9.67)

We still don’t know C so why does this help? Because we can get a different
formula for this a different way. If instead of shifting the axis, we chop off the
left half of the rod, then the new moment of inertia is

Ichopped = Icm/2 =
C

2
M L2 (9.68)

So this is the moment of inertia of a rod of length L/2 and massM/2 rotating
on it’s end.

What will be the moment of of a rod twice the length? We want to know
this because it’s the same as Iend. Well then L → 2L and M → 2M . So from
the last formula this is

Iend =
C

2
(2M) (2L)2 = 4C M L2 (9.69)

Comparing this with our first formula for Iend, Eq. 9.67 we have

C M L2 +
1

4
ML2 = 4C M L2 (9.70)

Solving for C we can just cancel the ML2’s, obtaining C = 1/12. Therefore
from Eq. 9.66 we have

Icm =
1

12
M L2 (9.71)
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Chapter 10

Angular Momentum and

Torque

We just discussed the rotation of a rigid body. We defined the basic concepts
and used them to solve simple problems. It was kind of a similar philosophy
to what we did with kinematics a few chapters ago. But now it’s time to forge
ahead and try to understand better how physical laws allow you to figure out
the motion of rotating bodies. This is analagous to using Newton’s laws to find
the motion of blocks and things like that in response to gravity and friction.
But now we will include rotational motion also. For example, instead of a block
sliding down a plane, we could try to figure out how fast a log rolls down a hill.

Let’s summarize what we’ve got so far. We have quantities analogous to
linear motion: angle is like distance, angular velocity is like velocity, angular
acceleration is like acceleration, moment of inertia is like mass.

If we want to understand mechanics better, what else can we crib from what
we’ve done before? Well how about momentum? We’ll see there’s something
analogous to that called angular momentum. How about force? Yes we’re
lucky again, there’s something called torque that behaves in a similar way. But
one thing is a bit odd. The above linear quantities, velocity, momentum, and
force, are all vectors, yet so far we haven’t talked about how to “vectorize” the
corresponding angular concept. Let’s see how to do that.

10.1 The direction of a rotation

Let’s think about angular velocity. We could make it a vector by giving it a
direction. That seems a bit tough at first sight. There seem to be a lot of
directions to the velocity of a rotating coin. Different parts are going in totally
different directions. But suppose we wanted to uniquely define a direction so
that everyone could tell what axis the object was rotating from only this one
direction. What would we use? Well the axis of course! Like take the earth.
It rotates around an axis and knowing that, you uniquely have the direction

129
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of rotation. All except, you don’t know if it’s spinning clockwise or counter-
clockwise (as seen looking down from the north pole). Well that’s ok because
though we have the axis, we don’t yet have a direction for the axis. It could
be an arrow pointing up, or one pointing down. So we define something called
the right hand rule that says that if you take your right hand and have your
fingers follow the direction of rotation, your thumb will define the direction of
the angular velocity vector.

So to make a respectable vector out of the angular velocity, we say we take it
with the magnitude as defined before, and direction given by the axis of rotation
and the right hand rule.

10.1.1 Relation with velocity

Now remember we learned that the velocity at a point on the object v = ωrperp,
where rperp is the distance between the point and the axis. It is the distance
measured perpendicularly from the axis to the point. Now let’s try to express
this relation as a vector relation.

If we define a vector r, measuring the moving point in relation to an origin
that is on the axis, we’d like to say v = ωr, except that makes no sense since
we haven’t defined how to multiply to vectors and get a vector! Well it’s about
time we do that. So we have a vector ω pointing up, and a vector r pointing
onto some point on the object as pictured in Fig. 10.1.

rperp in this picture is r sin θ. θ is the angle between r and ω. so

v = ωr sin θ (10.1)

What about it’s direction. It’s not hard to see that v is perpendicular to
both ω and r.

This is what’s called a cross product or vector product. If you have two
vectors A and B, then we can define a vector C = A×B. It has a magnitude
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Figure 10.1:

AB sin θ, with θ being the angle between A and B. And it’s perpendicular to
both A and B.

So we see that v = ω × r. Could I have said v = r × ω? The answer
is no! We have to be careful about getting our signs right, and again we use a
right hand rule to make that clear.

In Fig. 10.2, we show how you can get the direction of the cross product
A × B. You first hold the fingers of your right hand straight to point in the
direction of A, shown in red. Then you bend them to point in the direction of
B, shown in blus. So if the first vector being multiplied, A is represented by the
stretched fingers, and the second, B, by the bent ones, then the thumb gives the
direction of the resulting cross product. Notice that if the order was reversed,
so would the directions so that A×B = −B×A!

An alternative statement of the right hand rule for cross products is the
“screw rule”: if you consider the plane containing the vectors A and B and find
that you have to rotate clockwise to go from A to B, the cross product will
point inwards. If you have to rotate anticlockwise, the cross product will point
outwards. (You have to rotate in the direction where you will reach B faster;
of course, you will eventually reach B even if you go in the wrong direction.)
This is like standard right-handed screws, which go in when they are tightened
clockwise and out when they are loosened anticlockwise.
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AB θ

A   Bx

Figure 10.2:

10.1.2 Properties of the cross product

Like the dot product, the cross product has some nice properties. It’s easy to
see that A× (B+C) = A×B+A×C.

Also if two vectors are going in the same direction, the cross product is zero.
If the vectors are perpendicular then | sin θ| = 1 so that the magnitudes just
multiply. Let’s work out some of the cross products between unit vectors:

î× ĵ = k̂, k̂ × î = ĵ, ĵ × k̂ = î (10.2)

So now we should be able to work out the cross product in cartesian coor-
dinates by multiplying out all of the components. It’s a lot of work and the
answer is

A×B = (AyBz −AzBy )̂i+ (AzBx −AxBz)ĵ + (AxBy −AyBx)k̂ (10.3)

The component formula is often the simplest way to work out problems
involving cross products.

10.2 Angular Momentum and Torque

So now we see how to make our rotational quantities vectors. So let’s ask what
is the analog of momentum and force. Let’s start with force.

10.2.1 Torque

First think about what a force does. If you apply a force to an object, it’ll have
a tendency to go in that direction. Now you want to know what kind of thing
you apply to twist an object. For example, if you have a merry-go-round, you
can apply a force to the rim of it. If the force is towards the center, it won’t
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move at all. If it’s tangent to the rim, it’ll move a lot more easily. Also if you
apply a force close to the center, it won’t move much.

Given this, we see that what causes a rotating object to twist is not just the
force, it depends on where the force is being applied and in what direction. So
now we define the torque to be

τ = r× F (10.4)

where r is the vector representing the point where the force is being applied.
Does this make sense? Well, the dependence on r means that the larger r is, the
more effective the force will be in twisting the object. The cross product makes
sense too. If r and F are in the same direction, you get no twist, if they’re
perpendicular, you get the maximum effect. The whole thing seems pretty
sensible. Now the direction of τ is a bit odd at first sight. It’s perpendicular to
both r and F. Think about appling torque with a wrench to undo a screw. The
direction of the torque is in the direction of the bolt. It defines the axis that
you’re attempting to twist the object.

But does our analogy with translational motion hold? If I is like the mass
m, and α is like a, then the analog to f = ma should be τ = Iα. Is this true?

Let’s try to see if this works out. The strategy is as follows. We’ll consider
some object like a disk rotating about a fixed axis. We’ll consider it to be two
dimensional for simplicity. That way we don’t have to worry too much about
the vector nature of the problem. We’ll divide it up into lots of tiny masses
and understand each one individually. Then we’ll sum up the effect from all of
them.

First of all consider just one point mass circling at a distance r from an axis.
Let’s say we apply a force F to this particle. r and F are both in the x-y plane,
so their cross product always points in the z direction, so τ here will represent
the z-component of τ .

τ = rF sin θ = rFt (10.5)

Here Ft = F sin θ is the tangential component of the force.
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r
i

F
i

But Ft = mat = mrα So plugging this in we have

τ = rmrα = mr2α (10.6)

The moment of inertia for a single particle is just mr2, so we get τ = Iα
for this one particle. Now let’s say you’ve got a jillion particles. To each one
you apply a different torque τi, then the sum of all these torques is just

τnet =
∑

i

mr2i α = Iα (10.7)

This is analogous to F = ma.
Now we’ve understood the analogous quantity to the force, let’s do the same

for momentum.

10.2.2 Angular Momentum

Let’s define the angular momentum for a point object similar to the way we did
it for the torque

L = r× p (10.8)

If this is really analogous, the first thing we should check is if the analogy
to p = dF/dt holds:

dL

dt
=

d(r× p)

dt
=

dr

dt
× p+ r × dp

dt
= (10.9)

v × (mv) + r × dp

dt
= τ (10.10)

Here we used the fact that the cross product of a vector with itself is zero, and
the last equality used F = dp/dt.

So it does seem like this definition of L makes sense from a mathematical
point of view. If we have many forces acting on the system, it is straightforward
to extend this so that in general

τnet =
dLtot

dt
(10.11)
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For a continuous object let’s look at the two dimensional case considered
above where we showed that τ = Iα, where τ points perpendicular to the
rotating object. Since I is constant in time this says that

dL

dt
=

dIω

dt
(10.12)

So
L = Iω (10.13)

(note that if ω = 0 all velocities are zero so L = 0).

10.2.3 Note on τ = Iα

We derived τ = Iα and L = Iω for a two dimensional continuous object
rotating in an axis perpendicular to its plane, but we can apply it to non-
pancake-like objects with a few caveats.

First consider some symmetric object that’s rotating about a symmetry axis
in zero gravity as shown in Fig. 10.3. there is no torque on the bearing.

Figure 10.3:

Now take off one of the arms as shown in Fig. 10.4. Now the object will
not continue to spin around. It is “off balance”. To ensure that it continues
to rotate around as it did before, you need to change the construction of the
bearing as shown in Fig. 10.5. Now the bearing provides a torque to hold the
object at the right angle. If we apply an external torque to the red ball, it
will cause a torque to be applied to the bearing. The bearing torque keeps the
objects rotating about in the horizontal direction. In this case we can still write
τ = Iα, but keep in mind that additional torques are being generated to keep
the object rotating around like we want it to.

Now what happens to L? In the first picture, the angular momentum vector
points along the axis of rotation. In the second it does not. Measured from
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Figure 10.4:

Figure 10.5:

the bearing, r × p for each arm of the object has a vertical and a horizontal
component, but when both arms are present, the horizontal components add
up and the vertical components cancel. The angular velocity is horizontal, and
L = Iω. With just one arm, there is a vertical component to the angular mo-
mentum, but the angular velocity remains horizontal. Moreover, as the object
rotates, the vertical component of the angular momentum also rotates about
the axis of rotation: downwards, into the paper, upwards, then out of the pa-
per. Because the angular momentum is changing with time, a torque has to be
applied to keep the object steady.

Our derivation of L = Iω assumes the former case. We have to be careful
to only use this formula when rotation is along an axis of symmetry.

We can obtain the same result more formally. For a collection of particles,
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or a continuum object,

L =
∑

i

ri×(mivi) =
∑

i

miri×(ω×ri) =
∑

i

mir
2
iω−

∑

i

miri(ri ·ω) (10.14)

so that, if the z-direction is chosen to be along ω, then Lx = −(
∑

i mixizi)ω,
Ly = −(

∑

i miyizi) and Lz = [
∑

i mi(r
2
i − z2)]ω = [

∑

i mir
2
i,perp]ω. If the

rotation is about an axis of symmetry, Lx and Ly are zero. Note that all
the other formulae we have derived are always true, regardless of whether the
rotation is about an axis of symmetry:

vi = ω × ri

L =
∑

i

ri × pi

dL/dt =
∑

i

ri × Fi = τ

K =
1

2

∑

i

vi · pi =
1

2

∑

i

[ω × ri] · pi =
1

2

∑

i

ω · [ri × pi] =
1

2
ω · L =

1

2
Iω2

(10.15)

where the sum over i is a sum over all the particles. It is only the equation
L = Iω (and, therefore, τ = Iα) that requires the rotation to be about an axis
of symmetry.

10.2.4 Example

Consider two masses connected by a massless string slung over a pulley as
shown. The moment of inertia of the pulley is I, and its radius is R. Calculate
the acceleration of the masses.

10.2.5 Solution

First of all we identify all forces acting on the masses and the pulley. The force
of gravity acts on the two masses, the tension pulls up. Now the pulley has
four forces acting on it: the tensions T1 and T2, and two more forces acting
at the center. Because the strings are massless, these tensions are the same in
magnitude as the ones acting on the weights.

Now we draw free body diagrams for the pulley and the two masses.

Free body diagram for pulley

The are four forces acting on the pulley, the two tensions pulling down, and
two forces on the bearing at the center due to the weight of the pulley and the
normal force, but these last two don’t contribute to the torque (why?). The two
tensions are shown in Fig. 10.6. What’s the net torque? The torque about the
center of the pulley from T2 is the cross product of the radius vector with T2.
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Figure 10.6:

This points into the page, which is the negative k̂ direction. The torque from
T1 points the opposite way, in the positive k̂ direction. So in the z-direction

τnet = RT1 −RT2 = R(T1 − T2) (10.16)

Now we apply τnet = Iα in the z-direction.

R(T1 − T2) = Iα (10.17)

Free body diagram for masses

The free body diagrams for each mass is shown in Fig. 10.7. The net force on
the first mass is

Fnet,1 = T1 −m1g (10.18)

The net force on the second mass is

Fnet,2 = T2 −m2g (10.19)

Applying Fnet,1 = m1a1 and Fnet,2 = m2a2 we have

m1a1 = T1 −m1g (10.20)

and

m2a2 = T2 −m2g (10.21)
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Additional relations

Now we need to figure out what are the relations between a1, a2, and α. a1
and a2 have to have the same magnitude. This was discussed earlier when we
considered examples with forces. If m2 moves up one inch, m1 must move down
the same distance. But their directions are opposite. Therefore

a1 = − a2 (10.22)

If a2 is positive then the pulley spins around in the counterclockwise direc-
tion. By the right hand rule, if you curl you right hand around the pulley in
the direction of motion, then your thumb sticks out of the page, which is the
positive k̂ direction. Therefore

a2 = αR (10.23)
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or

a1 = − αR (10.24)

Solution to equations

Substituting for the acceleration and α in the above equations 10.17, 10.20, and
10.21 we have

R(T1 − T2) = − I
a1
R

(10.25)

m1a1 = T1 −m1g (10.26)

−m2a1 = T2 −m2g (10.27)

Eliminating the tensions from the first equation using the other two equa-
tions

m1a1 +m1g − (−m2a1 +m2g) = − I
a1
R2

(10.28)

and solving for a1

(m1 +m2 +
I

R2
)a1 = (m2 −m1)g (10.29)

or

a1 =
(m2 −m1)g

m1 +m2 +
I
R2

(10.30)

One could also get the same result from conservation of energy. If h1 is
the height of the first mass, the potential energy is equal to (m1 −m2)gh1 plus
some constant, because the second mass is lowered when the first mass is raised.
Therefore

E =
1

2
[m1v

2
1+m2v

2
2+Iω2]+(m1−m2)gh1 =

1

2
[m1+m2+I/R2]v21+(m1−m2)gh1

(10.31)
where we have used v2 = −v1 and (Rω)2 = v21 . Differentiating with respect to
time,

0 = [m1 +m2 + I/R2]v1a1 + (m1 −m2)gv1 (10.32)

from which one can obtain a1.

10.3 Conservation of angular momentum

If the net torque acting on a system is zero then

dLtot

dt
= 0 (10.33)



142 CHAPTER 10. ANGULAR MOMENTUM AND TORQUE

which says that the total angular momentum is conserved. As with conser-
vation of energy and conservation of momentum, this is a very useful law. Let’s
consider someone rotating around on a stool with nearly frictionless bearings.

If the person is holding some weights in their hands then they can change
their moment of inertia by stretching out their hands. It increases from Ii to
If . If the initial angular velocity is ωi, what is the final angular velocity ωf?
Well if the stool is frictionless, then the net torque on the person plus weights
is zero, so angular momentum is conserved. So

L = Iiωi = Ifωf (10.34)

and therefore

ωf =
Ii
If

ωi (10.35)

So when the moment of inertia increases, the angular velocity decreases.

10.4 Rolling

Wheels are a marvelous invention that allow us to zip around a lot faster than
we would normally with our own two legs. Whatever cave-creature invented the
wheel should certainly be given the Nobel prize. On the other hand, they did
choose a pretty stupid spelling for their invention.

A lot of mechanics problems involve wheels. They’re interesting because they
couple translational motion with rotational motion. If a wheel is rolling with a
velocity v, what is it’s angular velocity? We can compute that by considering
the figure below.
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d=2  rπ

The red dot marks a fixed spot on the rim of the wheel. In the first snapshot,
the red dot is next to the ground. In the second, it has rotated 180 degrees and
is now at the top. Finally at time T , it’s back at the ground again. The wheel
has done one revolution and in that same time, the center of the wheel has gone
the wheel’s circumference d = 2πr, where r is the radius of the wheel. Now
the angular velocity ω = 2π/T . That is, the wheel has rotated 2π radians in
the time T it takes to make one revolution. So the velocity

v =
d

T
=

2πr

T
= ωr (10.36)

Imagine that! It’s our old friend v = ωr. But this means something quite
different here. The v here is the center of mass velocity of the wheel. Our
old friend refers to a different v, the velocity of the rim of the wheel when the
center isn’t moving. Ok, so what do we make out of all of this? We can think of
rolling as combining a pure translation of the wheel at center of mass velocity
vc = ωr with rotational motion about the center of mass with angular velocity
ω. This then tells us what the speed of the wheel is at various places on it’s rim.
For example, at the top of the wheel, we add vc = ωr to the velocity due to
rotational motion ωr. This gives 2ωr = 2vc. At the bottom of the wheel, right
next to the ground, these two effects cancel, and so the velocity of the wheel
at the ground is zero! This makes sense, because if it were different from zero,
the wheel would be sliding along the ground, which we are not allowing. The
following is a sketch of the velocity vectors for several points along the rim of
the wheel.

Notice that it is identical to the velocity if the wheel was pivoted at the
bottom. So instantaneously a rolling wheel looks as if it’s pivoted.

10.4.1 Kinetic energy

Now we can calculate the kinetic energy of a rolling wheel. One way is to
consider the motion as a combination of rotation about the center of mass and
translation. The kinetic energy is then

K =
1

2

∑

i

mi|vc+ω×ri|2 =
1

2
(
∑

i

mi)v
2
c+

1

2
Iω2+(vc×ω)·(

∑

i

miri) =
1

2
mv2c+

1

2
Iω2

(10.37)
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because, by definition,
∑

miri = 0 at the center of mass. But for rolling motion,
ω = vc/r, so

K =
1

2
(mv2c + I(

vc
r
)2) =

1

2
(m+

I

r2
)v2c (10.38)

So this says that the kinetic energy is increased by the moment of inertia of the
wheel.

Another way of getting the kinetic energy is to use the fact that the wheel
appears to be instantaneously pivoted about the bottom. So

K =
1

2
Ibω

2 (10.39)

But Ib is the moment of inertia of the wheel when rotated about an axis passing
through the rim. By the parallel axis theorem we can relate this to the moment
of inertia about the center of mass:

Ib = I +mr2 (10.40)

So

K =
1

2
(I +mr2)ω2 (10.41)

Giving the same result as above.

10.4.2 Example

Suppose a cylinder with moment of inertia I is let go from rest so that it slides
down an inclined plane making an angle of θ with the horizontal. Calculate

a The velocity after the cylinder has gone down a vertical distance h.
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b The acceleration along the inclined plane.

h

y=0

d

Solution

We will use conservation of energy to solve the problem. You can also solve it
using torques and forces.

Initially the potential energy, measured from y as shown is U = mgh and
the kinetic energy is zero. So the total energy is E = mgh.

Finally, the potential energy is zero, and from Eq. 10.38 we have the kinetic
energy. Therefore

E = mgh =
1

2
(m+

I

r2
)v2 (10.42)

Therefore the answer to (a) is

v2 =
2gh

1 + I
mr2

(10.43)

To relate this to the distance travelled along the incline. h = d sin θ.
Therefore

v2 = 2
g sin θ

1 + I
mr2

d (10.44)

To get the acceleration a, note that v2 = 2ad. Comparing with the above, we
have that answer to (b):

a =
g sin θ

1 + I
mr2

(10.45)

Now let’s look at what happens for different kinds of cylinders. If the cylinder
is hollow, then I = mr2, so a = 1

2g sin θ. If it’s solid then I = 1
2mr2, so

a = 2
3g sin θ. Therefore it accelerates faster if the cylinder is solid.

10.5 Gyroscopes

A gyroscope is a fascinating mechanical device with a lot of technological ap-
plications. You can easily make a gyroscope from a wheel with a handle put
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T

W

Figure 10.8:

through the middle. A picture of what this looks like from the side is shown in
Figure 10.8.

If you dangle the end of the handle from a string, the wheel doesn’t flop
over put stays up straight! This might seem a bit odd because the weight W
is pointing straight down. Instead it slowly moves around in a circle, that is
it precesses. I kid you not! This is quite counterintuitive but can easily be
understood by using the concepts of angular momentum and torque.

In Figure 10.8, the forces on the gyroscope are its weight, and an opposite
force from the tension in the string. The torque around the center of mass
comes from the tension, and points out of the paper. The angular momentum
of the wheel points along its axis of rotation, i.e. to the left. The same situation
is shown in Figure 10.9, looking down from above. The state of the gyroscope
in Figure 10.8 and at a later time are both shown in this figure. The angular
momentum and torque are shown too, and rotate with the gyroscope.

τ τ

L

L

Figure 10.9:
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In Figure 10.10, the angular momentum is shown for two times t and t+ dt,
where t corresponds to the first snapshot in Figure 10.9. The difference between
them is the vector dL. Does this make sense yet? As seen from the figure, the

L
dL

τ

Figure 10.10:

torque is in the same direction as dL. Therefore the equation

τ =
dL

dt
(10.46)

can be satisfied if the gyroscope is precessing at a suitable rate. Here we’re
assuming that the rate of rotation of the wheel ω is much greater than the rate
of precession Ω, so that we can properly use L = Iω. So let’s compute the
rate of precession.

If the length from the string to the center of mass of the wheel is called d,
then the torque has magnitude

τ = mgL (10.47)

What is dL? It’s dL = dθL, where dθ is the angle by which the gyroscope
precesses and therefore L rotates (remember that dθ is in radians). Therefore

τ = mgd =
dL

dt
= L

dθ

dt
= Iω

dθ

dt
(10.48)

But by definition

Ω =
dθ

dt
(10.49)

So we have

Ω =
mgd

Iω
(10.50)

The bigger ω, the slower the wheel precesses. The larger d, the distance
between the center of mass and the axis of rotation, the faster the object pre-
cesses.

Let’s test how well we understand this

10.5.1 Example

(a) Suppose you tap the handle downwards, in what direction will the wheel
move?
(b) Suppose you tap the handle in the horizontal direction, in what direction
will the wheel move?
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Solution

(a) Well you’ve now added additional torque to the torque already there from
gravity. So τ will stay in the same direction, but increase in magnitude. There-
fore dL/dt will increase, causing the wheel to momentarily rotate around more
quickly.
(b) If you tap in the horizontal direction, you add a component to the torque
in the vertical direction. So dL is now no longer in the horizontal direction and
the wheel will start moving up, or down, depending on the direction you tap it.



Chapter 11

Gravity

Now we’re going to talk about one of a problem that has fascinated humans
since we were cave dwellers. No, not how to make a decent club to thump our
neighbors with, but what we always do in our more contemplative moods, look
up at the sky at night, and wonder about all those little tiny lights up there.

The more we looked and looked the more that emerged. We pretty soon
discovered that some of those lights up there were different than others. We
call those planets. We started trying to see if we could predict where they were
going to be. It was a big problem for thousands of years to figure out what
those darned planets were doing.

It seems easy today since we know the answer. But if you didn’t know the
Earth was spinning, while rotating about the sun, the motion of the planets
would seem pretty darned complex. People got really keen on finding the an-
swers to where the planets would be. Lots of religions are based on these things.
So surprise surprise, people became a little hot headed and started calling each
other heretics and such nasty things. All over these silly spots of light in the
sky.

Eventually technology progressed to the time of Tycho Brahe, where he
convinced the king of Denmark, in the sixteenth century to help him set up a
big observatory to make accurate observations of the positions of the planets.
He hoped to use this data to predict eclipses and the like, things that most
humans thought would portend various unsavory events.

His disciple Johannes Kepler, spent a couple of decades analyzing the data
and trying to make sense out of it all. The problem is that he seemed by present
day standards to be a bit of a lune-tune, and quite literally. He had this notion
that the planets were singing tunes as they merrily spun around the sun.

Galileo himself being a musician wasn’t very impressed by Kepler’s tunes
and didn’t take the man all that seriously. But buried in some long rambling
treatise, are Kepler’s three laws that have stood the test of time, and provoked
Newton to give serious consideration to this problem.

149
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11.1 Kepler’s Three Laws

1. The planets move in elliptical orbits. The sun sits at one of the foci.

r
max

r
min

2. The radius vector, measured from the sun to the planet has a very neat
property. The area swept out by the radius vector, covers equal areas in
equal times.

3. The period T of orbit is simple related to R = (rmin + rmax)/2. (R is
half of the major axis of the ellipse). It is that T 2 is proportional to R3.

These laws seemed to describe the motion of the planets very accurately
but people were at a loss to come up with a reasonable explanation. In fact,
Newton’s three laws are not enough to explain Kepler’s. You still have to figure
out what the force is between the sun and a planet.

Newton was a mighty smart fellow and once a form of this gravitational force
was proposed, he could easily whip through pages of his newly invented calculus
to figure out if it was consistent with Kepler’s laws. It is debatable whether he
actually came up with the correct form. Some say it was Robert Hooke, who
has been largely overlooked by historians because of poor political skills, and
just plain bad luck. But whatever the truth, the gravitational force has become
known as Newton’s law of gravity, or Newton’s inverse square law, or Newton
this, or Newton that. Next you might be wondering who really invented those
cookies with figs inside of them.
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11.2 The Law of Gravity

The force F between two point objects of masses m and M , separated by a
distance r has a magnitude

F = G
Mm

r2
(11.1)

The force is attractive and points along the line between the two objects.
This gravitational force is very fundamental. It can’t be explained in terms
of other forces such as the forces between charged particles. It doesn’t matter
what the material is made up of, old pillows, blueberries, lungfish, you name it,
as long as the mass is the same, the force is the same. This has been thoroughly
tested.

The symbol G is a constant known as the gravitational constant. It was first
determined a long time ago , 1798, by Lord Cavendish. It was quite impressive
how he managed to do it, see Fig. 11.1.

m

M

m

M

mirror

fiber
quartz

F

F

Figure 11.1:

Essentially he took two small masses and hung them from a very thin quartz
fiber. The fiber exerts a tiny torque if twisted away from its equilibrium position.
So it makes a very sensitive force meter. He then took two large masses and put
them close to the hanging ones, measuring the twist of the fiber. He did this by
attaching a little mirror to the fiber and shining a beam of light at it. It then
bounces off the mirror to a wall quite far away. Measuring the displacement of
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the dot on the wall, you can calculate the force between to two masses. Knowing
their distance and their masses, you have enough information to calculate G.
Cavendish did a jolly good job and even today, G is only known to about four
decimal places! Its value is

G = 6.674× 10−11Nm
2

kg2
(11.2)

11.3 Weighing the Earth

Essentially Cavendish used one mass to weigh another and get G. But we weigh
masses every time we go to buy fish. We’re using the Earth to weigh the fish.
Could we use this to get the mass of the Earth? But wait, there are a couple of
things I should say to make this clearer.

It is by no means obvious that the gravity that we feel sitting quite confort-
ably in our chairs is related to the forces that drive the planets around the sun.
It was quite bold for Newton to assume it was the same force. All the particles
in the Earth are pulling on you, keeping you in your seat. Atoms that make
up the core of the Earth, a sea slug off the coast of Tasmania, an old smelly
sock sitting in some dorm room in Amherst. All these atoms add up using Eq.
11.1 to give you total gravitational force acting on you. But what will that be?
Clearly the Earth is not a point particle, and the law of gravity stated above
only applies to point particles.

Using some math, one can show, as Newton did, a quite amazing result. The
force between a uniform sphere and a point object is the same as if all the mass
of the sphere was concentrated at its center! The easiest way to show this is to
use something called “Gauss’s Law” which you’ll learn about when you study
electricity and magnetism. You can either wait until then, or show it the brute
force way, by doing some multiple integration.

So let’s get back to the mass of the Earth. We know that when you weigh
a fish of mass m, the force the Earth exerts on the fish is F = mg. But from
what we’ve just said, the law of gravity gives us the same thing a different way

F = G
Mem

R2
(11.3)

Where Me is the mass of the Earth, that we’re concentrating at the Earth’s
center. Then R, is the distance between the fish and the center of the Earth.
Unless your fish is horribly confused, R will be the radius of the Earth. So now
we can solve for the mass of the Earth

Me =
FR2

Gm
=

mgR2

Gm
=

gR2

G
(11.4)

But we know from various means what the radius of the Earth is. It’s about
6.37 × 106m. Taking g = 9.8m/s2, we get the mass of the Earth is about
6× 1024kg. That’s a big number even in a state like Texas.
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From this we can calculate the average density of the Earth since the volume
of the Earth is V = 4

3πR
3. It’s

ρ =
Me

V
≈ 5.5

g

cm3
(11.5)

That’s about twice the density of rock. So that gives you the idea that things
underneath us are under an awful lot of pressure!

Now let’s see if we can understand Kepler’s laws

11.4 Explanation of Kepler’s Laws

11.4.1 Law 1

I’m afraid you’ll have to wait until you take a course in upper division mechanics
to see an explanation of this one. If you solve F = ma you find that your
result is either an ellipse, a parabola, or a hyperbola. It’s straightforward, but
involves a fair knowlege of differential equations. But wait a second: why don’t
we see hyperbolic motion for planets? Well if we did, they would stay around
for very long would they? That’s why the planets have to have elliptical orbits.

11.4.2 Law 2

This one we can deduce. First of all, what is the torque on a planet exerted by
the sun? It’s zero, since the direction of the force is in the same direction as the
vector displacement between the planet and the sun. So τ = r × F = 0. In
other words, the sun doesn’t try to twist the planet.

So if the torque is zero, angular momentum is conserved. Let’s figure out
the angular momentum geometricaly. Now

L = r× p = m(r× dr

dt
) (11.6)

So what’s r× dr? This little picture should help

r

dr

dr

Here we have r at some point in time, and show how much area it sweeps
out over a very short time dt. At the end of this time, r has moved by the vector
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dr. So let’s compute r× dr. It points out of the page and has a magnitude

|r× dr| = rdr sin θ = rdr⊥ (11.7)

This is just twice the area of the blue region (for small dr), because the area
of this triangle is

dA =
1

2
rdr⊥ (11.8)

So putting this all together

L = m|r× dr

dt
| = m

2dA

dt
(11.9)

This says that the angular momentum, L, is proportional to the rate of change
of the area swept out. And because L is constant, the rate that area is swept
out is constant. Ths is equivalent to to saying that the planet sweeps out equal
areas in equal times.

11.4.3 Law 3

We’ll show this is true only for circular orbits. To derive this for general elliptical
orbits requires more advanced math than we’re using at present.

So let’s apply F = ma to a circular orbit. The acceleration points towards
the sun and has a magnitude ω2R. The gravitational force points in the same
direction. Setting ma equal to 11.1 we have

F = G
Mm

R2
= ma = mω2R (11.10)

Solving for ω

ω2 = G
M

R3
(11.11)

The period T is related to ω through

ω =
2π

T
(11.12)

Substituting for T we finally have

T 2 =
4π2

GM
R3 (11.13)

Well, this is Kepler’s third law with the constant of proportionality explicity
calculated.

11.4.4 Example

An orbiting satellite has a maximum distance from the Earth of rp and a speed
at that point of vp. What is the speed half an orbit later when it is at a minimum
distance from the Earth ra?
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Solution

Use conservation of angular momentum. At the maximum and the minimum
distances, the radius vector is perpendicular to the velocity vector so that the
angular momentum is

L = mrpvp = mrava (11.14)

Solving for va

va =
rp
ra

vp (11.15)

11.5 Gravitational Potential Energy

The gravitational force is conservative. We can see that it only depends on the
end points by considering the work it takes to go between two points

W =

∫ B

A

F(r) · dl (11.16)

To be clear, we are not using the approximation of uniform gravitational ac-
celeration that works for objects near the Earth’s surface. Instead, we use the
actual gravitational force from Newton’s law of gravitation.

r

r

dl

dl = dr.r
^

^

F points in the radial direction, that is in the negative r direction. The dot
product F(r) · dl = |F (r)|dl cos θ. But r̂ · dl = dl cos θ is the component of dl
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in the radial direction. Call it dr. So

W =

∫ rB

rA

F (r)dr (11.17)

In other words, the integral only depends on the radial coordinate r, and is
therefore independent of any meanderings at different angles, that is it’s inde-
pendent of the path.

From the definition of potential energy, we know that the potential energy
is defined in relation to some reference point, say at radius ri. Let’s set the
potential U at radius ri equal to zero so

U(r)− U(ri) = U(r) = −
∫ r

ri

F (r)dr (11.18)

But F (r) points towards the center, so it is

F (r) = − GMm

r2
(11.19)

Plugging this in we have

U(r) = GMm

∫ r

ri

dr

r2
= GMm(

1

ri
− 1

r
) (11.20)

To make life simple lets get rid of the first term by starting at infinity, so that
1/ri = 0. Then

U(r) = − GMm

r
(11.21)

So after all this, the final form for the potential energy is pretty simple. The
potential energy decreases as the two objects get closer together. It is inversely
proportional to r, unlike the force which is inversely propotional to r2.

11.5.1 Escape velocity

“What goes up must always come down”. Not necessarily. Consider this plot
of the potential energy in red (Fig. 11.2).

Here we have a plot of the potential energy of an object, say a baseball as a
function of distance from the Earth’s center. Suppose we give it a kinetic energy
of K, Then the total energy U +K is given by the green horizonatal line. That
means that the ball can increase r by turning some of its kinetic energy into
potential energy. At the point where the red and green lines cross, it can go
no higher. All its energy is potential and none kinetic. That’s the maximum
height that it can rise to.

OK, but suppose I give it enough kinetic energy so that E > 0? Now the
green line is above the x axis and the object can keep going further and further
away. It’ll never have to worry about running out of kinetic energy. In this way
it can escape to infinity and never come back down again!
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Figure 11.2:

How much velocity then, do we have to give a mass m that starts at the
surface of the Earth, so that it can escape?

This threshold occurs when E = U +K = 0. So

1

2
mv2 = K = − U =

GMem

R
(11.22)

So

v2 = 2
GMe

R
(11.23)

But we can express this in terms of g rewriting Eq. 11.4 as

gR2 = GMe (11.24)

So
v2 = 2gR (11.25)

or
v =

√

2gR (11.26)

Well, what is this?
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With the radius of the Earth being R = 6.37 × 106m and g = 9.8 m/s2,
we have that v = 11.2× 103 m/s. That’s pretty fast!

But individual molecules at room temperature do cruise around at compa-
rable speeds. You’ll see later on when you study statistical mechanics, that
the typical speed v of an atom depends on its mass m as v ∝ m−

1
2 . So the

lighter molecules, such as hydrogen have enough velocity to escape from the
Earth, whereas heavier ones such as nitrogen and oxygen don’t. That’s one of
the reasons that you don’t see much hydrogen or helium floating around in the
air.

On other planets, the escape velocity is quite different. Jupiter has a much
higher escape velocity and consequently has many more light elements in its
atmosphere. Lighter planets like Mars have a lot less atmosphere than the
Earth.

11.5.2 Example

A rocket is launched vertically from just outside the Earth’s atmosphere (so
there’s no air resistance). What should it’s initial velocity by so that it goes up
by an earth radius R = 6.37×106 m, from the Earth’s surface? Compute your
answer in terms of the escape velocity.

11.5.3 Solution

We use conservation of energy. Initially

E = Ki + Ui =
1

2
mv2 − GMem

R
(11.27)

(where we have assumed that the atmosphere is sufficiently thin that the initial
distance of the rocket from the center of the Earth is approximately R). At its
maximum height of 2R from the center of the Earth, the kinetic energy is zero
so that all the energy is potential. So

E = Uf = − GMem

2R
(11.28)

Equating initial and final energies, we have,

1

2
mv2 =

GMem

2R
(11.29)

So

v2 =
GMe

R
(11.30)

In terms of the escape velocity we have from Eq. 11.23 that

v2 = v2esc/2 (11.31)

or the velocity is 1/
√
2 times the escape velocity.
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11.5.4 Energy of orbits

Let’s think a bit about the total energy of orbiting objects. Suppose an object
with mass m doing a circular orbit around a much heavier object with mass M .
Now we know its potential energy. It’s

U = − GMm

R
(11.32)

How about it’s kinetic energy? From Eq. 11.11 and the fact that v = ωR
have

v2 = ω2R2 = G
M

R
(11.33)

so that

K =
1

2
mv2 =

1

2

GMm

R
(11.34)

Notice that K = − U/2 and that

E = K + U = U/2 = − GMm

2R
(11.35)

So the total energy is always negative. In the same way that electrons in an
atom are bound to their nucleus, we can say that a planet is bound to the sun.
Its energy is negative, so it doesn’t have enough energy to escape to infinity.

But what if the energy were positive? In that case the trajectories are no
longer elliptical, and instead you get hyperbolic orbits! The object comes in
from interstellar space (as they say on Star Trek) almost going in a straight
line, and then cruises around the sun and is finally deflected in a straight line
off into never-never land, never to be seen by us again!
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11.6 The hollow Earth

There are some crackpots out there that have written books claiming that the
Earth is hollow and there a bunch of flying saucers inside it. Well, let’s discuss
what the force of gravity is like in this situation.

You have the forces from all the atoms in the shell tugging at you. If you’re
in the center, its pretty clear that they all cancel and you get zero. It turns out
that the force inside is exactly zero even away from the center! As I mentioned
before, this can be understood most easily using Gauss’s law, so I won’t try to
prove it here.

Let’s use this fact to figure out what the force of gravity is as we journey to
the center of the Earth. Let’s consider the Earth to be of uniform density. Call
the radius of the Earth R. Let’s say we’re at a distance r < R from the Earth’s
center. Then we can think about the Earth as being composed of a little sphere
of radius r lying beneath you, and a hollow spherical cavity above you. The
hollow spherical cavity is just a bunch of spherical shells and doesn’t apply any
force to you. So you’re just left with the little sphere of radius r.

r
R

As we said before, for when you’re outside a sphere, the force of gravity is
the same as if all the mass were concentrated at the center. Call the mass of
the sphere of radius r, M(r). Call your mass m. So the force on you is

F =
GM(r)m

r2
(11.36)

What’s M(r)? It’s just the density ρ times the volume. So

M(r) = ρV =
Me

4
3πR

3

4

3
πr3 = Me

r3

R3
(11.37)

So using this we have that

F =
GMe(r

3/R3)m

r2
=

GMem

R3
r (11.38)
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So the force varies linearly with distance, just like one gigantic spring!
If the Earth wasn’t so darned hot inside, and under such enormous pressure,

it would suggest a neat means of transportation. Just dig really deep holes in
the Earth that go all the way through, and jump in! Ignoring air resistance,
you could jump in at San Francisco, fall for a while, and end up in Shanghai!
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Chapter 12

Simple Harmonic Motion

In this chapter we explore a topic with huge implications for a lot of different
subjects in physics. Simple harmonic motion describe the neatest form of oscil-
lations. It has uses in everything from waves in solids and liquids, light waves,
to atomic physics.

Simple harmonic motion is prototypically described by a mass attached to
a spring, which is what we’ll talk about now.

12.1 Mass and spring

Suppose you have a mass connected to a spring on a frictionless surface. The
other end of the spring is attached to a wall. In equilibrium the mass just sits
at the point x = 0. Now pull the mass and let it go as shown in Fig. 12.1.

You see that the whole thing oscillates with a period of T . That is after
time T , the mass returns to its initial state. Without any friction this motion
will persist indefinitely. After a while it gets a bit boring just starting at it, and
you might want to know in more detail how the position of the mass varies with
time, and how the period T depends on the spring constant k and the mass m.

Well let’s try to figure that out. We start from F = ma. Here F = − kx
according to Hooke’s law. So

a = − k

m
x (12.1)

This says that the acceleration is proportional to the displacement.

The problem with this equation is that the acceleration is not constant,
in fact it even changes sign when x changes direction. So we cannot apply
x = 1

2at
2 + . . . to this problem because that formula only applies for constant

acceleration. What we’ll first do is guess the solution and then after that I’ll go
through some other ways of getting it that at first might seem a bit tricky but
turn out to be quite informative.

163
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x=0

x=0

x=0

x=0

x=0

t=0

t=T/4

t=T/2

t=T

t=3T/4

Figure 12.1:

12.1.1 An educated guess

Let’s guess that the solution looks like a sine function. That seems sensible
because a sine wave oscillates back and forth and back and forth just like our
mass and spring as shown in Fig. 12.2.

The time it takes to complete one complete oscillation is called the period
. Here we’ve stretched the sine wave so that its period is T instead of 2π.
(Just as we did for circular motion and rotation, the argument of the sine is
in radians, not degrees, so that we can use the standard results of differential
calculus.) Mathematically, we can do that by writing it as cos(ωt), where this
new parameter ω is called the angular frequency. From it, you can get the period
T as follows. You know that when the argument of the cosine is 2π you’ve gone
a complete oscillation so that means that

ωT = 2π (12.2)
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TT/2 3T/4T/4 t

x

A

Figure 12.2:

or ω = 2π/T . The angular frequency ω is measured in radians per second or,
because radians have no units, in inverse seconds.

The frequency of oscillation means the number of complete cycles that are
executed, per second. Mathematically, the frequency f is 1/T , so

f =
1

T
=

ω

2π
(12.3)

Another thing that’s important for this system is that the maximum dis-
placement of x. Note that unlike a cosine function, its maximum is not 1. We’ll
call the maximum displacement the amplitude of oscillation A. We can take
care of that by multiplying that cosine by A. So we have x(t) = A cos(ωt)

This describes oscillations pretty well. There’s one additional thing though.
We could defined t = 0 to be at some other time. This will then shift the
argument of the cosine by some constant amount. Call it δ. This is often called
the phase lag. So we have cos(ωt+δ). It shifts the maximum of the cosine to the
left by a fraction δ

2π of a period. That corresponds to a time ∆T = δ
2πT = δ

ω .

So finally we write

x(t) = A cos(ωt+ δ) (12.4)

Note that because cos(α+ β) = cosα cosβ − sinα sinβ, we could write

x(t) = A(cos(ωt) cos δ − sin(ωt) sin δ) (12.5)

But δ and A are arbitrary. So instead of this complicated expression, we
could call C ≡ A cos δ and D ≡ A sin δ, so

x(t) = C cos(ωt) +D sin(ωt) (12.6)
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TT/2 3T/4T/4 t

x

A
δ/ω

This is an equivalent way of describing this kind of oscillation. In other
words, adding a sine to a cosine gives a sine wave but shifted in phase, and
altered in amplitude.

12.1.2 The solution

Now we take our educated guess 12.4 and check it satisfies F = ma, or more
precisely, Eq. 12.1.

Let’s compute the acceleration. To do that, we need to compute a. Differ-
entiating once,

v =
dx

dt
= −Aω sin(ωt+ δ) (12.7)

and again

a =
dv

dt
= −Aω2 cos(ωt+ δ) (12.8)

Well this is that same as

a = − ω2x (12.9)

So we have something similar to Eq. 12.1. We still haven’t chosen ω, and
now we can choose it so that everything works out. Choose

ω2 =
k

m
(12.10)

and then it’s clear that the acceleration satisfies Eq. 12.1.

So now we know the solution. It’s a sine wave with an angular frequency of
√

k
m . Notice that A and δ can be anything that we want. In other words you

can start of the spring with a small oscillation, or a large oscillation, and the
angular frequency will be identical.
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12.1.3 Easy example

Suppose a 1 kg mass attached to a spring is oscillating on a frictionless surface.
You note that the period of oscillation is 6.28 s. What is the spring constant?

Solution

First let’s compute ω. The period T = 2π sec, so

ω =
2π

T
= 1/sec (12.11)

Now since ω2 = k/m,

k = mω2 = 1 kg 12/s2 = 1N/m (12.12)

12.1.4 More complicated example

Consider a mass m attached to a spring with spring constant k, sitting on a
frictionless table at rest. A free mass, also with mass m, moves towards the first
mass with velocity v and does a head-on elastic collision with it.

a What are the velocities right after the collision?

b What is the maximum compression of the spring?

c What is the time interval between the first collision and when the masses
recollide?

d What are the final velocities of the masses?

Solution

Let’s start by drawing some pictures
At first, the free mass has a velocity v and has a one dimensional elastic

collision with the first mass. As we know, when equal masses have elastic
collisions, they exchange velocities. Recall that collisions occur so fast that we
don’t have to worry about other forces while they are occuring: during the
collision, we can forget about the spring.

(a) In other words, after the collision, the free mass is at rest, and the mass
on the spring starts moving with a velocity of v.

(b) We can use conservation of energy. The initial energy right after the
collision, of the mass on the spring is 1

2mv2. At maximum compression all the
energy is potential energy, so

1

2
mv2 =

1

2
kx2 (12.13)

Therefore the maximum compression is

x =

√

m

k
v (12.14)
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x=0

x=0

x=0

t=0

t=T/2

t=T/4 v=0

(c) From the picture, you can see that the time interval is half a period. But
ω = 2π

T so

T =
2π

ω
= 2π

√

m

k
(12.15)

So the time interval is T/2 = π
√

m
k . Note that this is independent of the

initial velocity.
(d) When the first mass recollides with the second, they exchange velocities

again. So you end up with the mass on the spring at rest, and the free mass
flying off with velocity −v, the negative of the velocity it initially had before
colliding with the mass on the spring.

12.1.5 Relation to circular motion

If you’ve been keeping your eyes open, you might have noticed a similarity
between the lingo used here and that for rotational motion. This quantity ω
the angular frequency, looks quite similar to the angular velocity.

Is this just a choice designed to maliciously mislead you, or a random choice,
or a helpful hint? Well I’ll let you decide. Read on!

A way of seeing the relation between two dimensional motion and simple
harmonic motion can be made by rotating a wheel with a bit protruding from
the rim, and looking at the shadow of this on a screen as shown in Fig. 12.3.

By defining the angle θ in the usual way as shown in Fig. 12.4, we see that

θ = ωt+ θ0 (12.16)

But let’s call θ0 ≡ δ (can you guess why?). So if the radius of the wheel is r,
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Figure 12.3:

θ
x

Figure 12.4:

then
x = r cos θ = r cos(ωt+ δ) (12.17)
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Let’s call A ≡ r,

x = A cos(ωt+ δ) (12.18)

Great! This is just what we guessed earlier, so you see that some how this
simple harmonic motion is related to two dimensional motion. Let’s try to figure
out why.

Let’s “two dimensionalize” the mass on the spring! We’ll try to figure out
how a mass tethered to a spring will move in two dimensions. Eqn. 12.1 can be
written in terms of vectors.

a = − k

m
r (12.19)

Here r is the displacement vector and a is the acceleration. How do we
interpret this? Instead of a spring going back and forth along a line, imagine
a bungee cord with zero equilibrium length. You can describe the force that it
exerts on you when you pull it, but saying F = −kr. So now imagine you have
a bungee cord with one end tethered to the middle of a frictionless table. It’s
just like the one dimensional case, except now you can pull it in any direction.
What happens if you start it off doing a circular “orbit”? Well we can figure
out what happens just like we did for circular gravitational orbits. It’s a really
similar problem except we don’t have Newton’s law of gravity here, but rather
Hooke’s law for a spring. The acceleration is −ω2r, so applying F = ma

−kr = mω2r (12.20)

Solving for ω

ω2 =
k

m
(12.21)

Hmm, this looks just like what we found in the one dimensional case. So two
dimenionalizing the problem didn’t change this. Why not? Let’s think about
the problem now in component form. The x component of Eq. 12.19 is

ax = − k

m
x (12.22)

This is the same as Eq.12.1, the one dimensional problem! So it’s not surprising
that the results should be the same, if it’s the same equation. Right?

Well if we go further, we can derive what the x-component actually is. We
just did this with the shadow and wheel example. We saw that this gave the
correct general form for the solution, but from above we just got the correct
value of ω. This time we derived the whole thing, with a bit of dimensional
trickery. But we didn’t actually need to do any calculus.

12.1.6 Imaginary numbers aren’t so complex

There’s a further way of seeing the solution for a harmonic oscillator. We can
use complex numbers. This involves the use i ≡

√
−1. An imaginary number is

a multiple of i, like 3.1i, −2i, etc. A complex number is the sum of a regular
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(real) number and an imaginary number. But actually these complex numbers
aren’t so complex and have a lot of really nifty properties.

The use of complex numbers is extremely important in physics and is used
all the time in a wide variety of fields, so this should give you an introduction
as to how to use them and what they mean.

Let’s guess another functional form and see if it solves Eq. 12.1 This time
guess

x(t) = A eλt (12.23)

This doesn’t seem right. An exponential form like this grows, or decays. It
doesn’t oscillate!. OK, but suppose that we’re too stupid to see this and think
that it might be a good solution all the same. Sometimes trying stupid things
leads to new and interesting discoveries, and this is one of those times!

So let’s calculate the velocity

v =
dx

dt
= λAeλt (12.24)

and

a =
dv

dt
= λ2Aeλt (12.25)

So
a = λ2x (12.26)

Comparing this with Eq. 12.1, we have that

λ2 = − k

m
(12.27)

Notice the negative sign! This says that

λ = ±
√

− k

m
= ±

√
−1

√

k

m
= ± i

√

k

m
(12.28)

So we get that λ is imaginary.
We therefore know that one solution to the harmonic oscillator problem is

x(t) = Aei
√

k/mt = Aeiωt (12.29)

where A can be any number, and another solution is

x(t) = Be−i
√

k/mt = Be−iωt (12.30)

where here B is any number you like, and I have purposely made it different
from A as the two numbers don’t have to be linked.

It turns out that another solution to this problem would be to sum these
two solutions together. So the general solution to this problem can be written
as the sum of the two above solutions. If you don’t want to keep writing all
these pesky constants, you could say that the solution to this equation was

x(t) = {eiωt, e−iωt}, ω =

√

k

m
(12.31)
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which means you take any linear combination of these two functions and it’ll be
a solution to the harmonic oscillator equation, Eq. 12.1.

Similarly, we learned previously that the general solution can also be written
as

x(t) = {cosωt, sinωt} (12.32)

They both solve the same equation 12.1 which can be rewritten

d2x

dt2
= − k

m
x (12.33)

So there must be some relation between them! You don’t need to know what it
is to follow what comes later, but you might be curious. It’s

eix = cosx+ i sinx (12.34)

That’s called Euler’s equation. Let’s take x = π. This says the

eıπ = − 1 (12.35)

Pretty amazing!

12.2 Energy in oscillations

Let’s figure out what the kinetic and potential energy is during different phases
of an oscillation. The kinetic energy is 1

2mv2, and we calculated v in 12.7. Using
that, and also that ω2 = k/m,

K =
1

2
mA2ω2 sin2(ωt+ δ) =

1

2
kA2 sin2(ωt+ δ) (12.36)

The potential energy is 1
2kx

2 so

U =
1

2
kA2 cos2(ωt+ δ) (12.37)

If we calculate E = K + U we get

E =
1

2
kA2 sin2(ωt+ δ) +

1

2
kA2 cos2(ωt+ δ) = (12.38)

1

2
kA2(sin2(ωt+ δ) + cos2(ωt+ δ) =

1

2
kA2 (12.39)

Which is constant, and equal to the potential energy when the spring is stretched
to its maximum value. This seems correct.

In Fig. 12.5 we plot the both the position as a function of time and under-
neath that, kinetic and potential energy.

See how the energy shifts form, constantly transforming between kinetic and
potential. For example, initially all the energy is potential, as the mass is at
it’s maximum and the velocity is zero. A quarter of the way through a cycle,
all that potential energy has gone to kinetic as the mass passes through x = 0.
Then it starts slowing down as it heads over to negative x. Eventually at half a
cycle, the spring is maximally compressed and the energy is all potential again.
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Figure 12.5:

12.3 Other systems

Now we’ll look at a variety of systems all exhibiting the same phenomenon of
simple harmonic motion, starting with a mass hanging vertically from a spring.

12.3.1 Vertical spring

In our previous example, we had to rely on a frictionless surface to keep the
mass from from slowing down. But that’s hard to do in reality. It’s easier just
to hang the spring

The problem is that this slightly complicates the situation, because even
when the mass is hanging at rest, it is stretched due to gravity. We can calculate
that stretch. In equilibrium the acceleration is zero so the net force is zero. So
the two forces, the spring force, and force of gravity must balance each other

−kye −mg = 0 (12.40)

or in equilibrium, ye = −mg/k.
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ky

-mg

y

So with this in mind, let’s write down Fnet = ma

−ky −mg = ma (12.41)

But let’s change variables so that we measure distance from the equilibrium
position ye

−ky −mg = − k(y +mg/k) = − k(y − ye) (12.42)

Calling x ≡ y − ye, we have

−kx = ma (12.43)

This is identical to the equation for a horizontal spring, Eq. 12.1. So the an-
gular frequency ω is

√

k/m. So gravity has no effect on the oscillation frequency,
it just shifts the midpoint of the oscillations.

12.3.2 Pendulums

Pendulums are nothing more than objects than swing back and forth around
some pivot point. Of course they do this under a gravitational field. They used
to be fairly common, appearing in things like grandfather clocks. They’re still
used now by psychiatrists for being singularly good at putting their subjects
into a deep deep sleep... Wait a gosh darn minute; you think that this book
does a better job of that???

A couple of different examples of pendulums are discussed below. The sim-
plest one is just a mass dangling from a string as shown in Fig. 12.6.

Let’s apply F = ma to this situation. The acceleration in the tangential
direction at can be obtained by considering the components of the forces in that
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Figure 12.6:

direction. The easiest one is the tension T . That’s just zero in the tangential
direction because the string is perpendicular to this direction. The only one left
over is the component of the weight. Well that’s just −mg sin θ. So we have

mat = −mg sin θ (12.44)

But what is at? Well from what we figured out earlier, at = Lα. Here L is
the length of the string. So

mL
d2θ

dt2
= −mg sin θ (12.45)

Or
d2θ

dt2
= − g

L
sin θ (12.46)

This is the equation we have to solve for this pendulum. Before we solve it,
let’s look at a more complicated situation, a “physical pendulum” as shown in
Fig. 12.7.

Here you can see that we’ve pivoted this rigid body close to the top and
it’s going to swing back and forth. Because we’re dealing with a rigid body
we should use all this stuff that we learned about rigid body motion. That is,
τ = Iα. Here I is the moment of inertia reckoned around the pivot point.

What is τ? Well the force of gravity acts on the center of mass of the object,
and let’s say the distance between the pivot point and the center of mass is also
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Figure 12.7:

called L. So we have
τ = − Lmg sin θ (12.47)

So Iα = τ reads

I
d2θ

dt2
= −mgL sin θ (12.48)

or
d2θ

dt2
= − mgL

I
sin θ (12.49)

Both the equation for the simple pendulum and this equation are almost the
same. The constant multiplying the sine function is the only difference. So how
do we solve this? One method which is a commonly used technique, is to get
the answer for very small, deviations in θ. You can check out on a calculator
that

sin θ ≈ θ (12.50)

when θ ≪ 1. So if we stick to very small amplitude oscillations, we can safely
use this approximation. Then Eq. 12.49 becomes

d2θ

dt2
= − mgL

I
θ (12.51)

This looks just like the equation for simple harmonic motion Eq. 12.33,
except that we’re using θ as a variable rather than x and our constant k/m has
now change to mgL

I . Previously we got that ω2 = k/m so the only difference
now is that we have a different constant, so

ω2 =
mgL

I
(12.52)
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Let’s check out what this says for a simple pendulum. In that case I = mL2

so

ω2 =
mgL

mL2
=

g

L
(12.53)

As usual the masses cancel, and the answer depends only on gravity and the
length of the string. If you quadruple the length of the string, the oscillation
frequency goes down by a factor of two, which means the period doubles.

Notice this is only true for small oscillations. Suppose we increase the angle
θ, what happens to the period? It actually gets longer and longer. Eventually
something catastrophic happens when you start the pendulum from θ = π.
Assuming we have a thin rod and not string, you can start off the pendulum
from this point. That is, pointing directly up. If you start it pointing exactly
up, it’ll remain that way indefinitely. Of course that’s impossible to do because
this is an example of an unstable equilibrium. The point is though, that as you
approach this point, the ball will stay at the top for a very long time, and it
stays there longer the closer you can start it to θ = π. So the period actually
diverges in this limit. We have to keep in mind that our above formula for the
oscillation frequency is only true in the limit of small angles.

12.3.3 Example

Suppose you hang a ring of radius R from some point on the rim. What is it’s
frequency of oscillation for small amplitudes?

Solution

Eqn. 12.52 can be used here. The center of mass of the hoop is in the middle.
We’re hanging it from the rim. So L = R. What’s the moment of inertia? Be
careful! We’re not rotating it about the center. So I = Icm+MR2 = 2MR2.
Putting this together we have

ω2 =
mgL

I
=

mgR

2mR2
=

g

2R
(12.54)

12.3.4 Torsional oscillations

In the Cavendish experiment to measure gravity, we had a quartz fiber dangling
from the ceiling. Attached to it was a rod with masses on it. The fiber exerts
a torque when the rod is displaced from its equilibrium position.

For small angles, you can say the torque exerted is proportional to the dis-
placement from equilibrium

τ = − κθ (12.55)

This is just like F = − kx. κ is a constant having to do with the properties
of the materials.

So applying Iα = τ

I
d2θ

dt2
= − κθ (12.56)
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or
d2θ

dt2
= − κ

I
θ (12.57)

Again this is just like 12.33, so we have except of k/m we have here κ/I.

ω2 =
κ

I
(12.58)

So the quartz fiber will oscillate back and forth at this angular frequency.

12.4 Damped oscillations

We know that in reality, a spring won’t oscillate for ever. Non-conservative
forces will diminish the amplitude of oscillation until eventually the system is
at rest. If the mass at the end of the spring is sliding on a surface, one has to
include the force of friction. But even if the spring and mass oscillate vertically,
there is air resistance to slow them down gradually. This is due to “viscosity”, a
property of all fluids (i.e. gases and liquids). The magnitude of the force varies
from one fluid to another. Because the effect of the viscosity is to slow the mass
down, it is said to exert a “drag force.”

We can increase the drag force on the mass and spring. Imagine that the
mass is put in a liquid like molasses. Your lab instructor will not like it when
they see their nice metal weight coated with a thick layer of ants in the morning.
Be that as it may, when the mass is inside the molasses, it’ll hardly oscillate at
all. The viscosity of molasses is very high. On the other hand, a mass in air
oscillates many times before it comes to rest.

A pretty good approximation for the drag force acting on a body moving at
low velocity in a fluid is fr = − bv. The constant b depends on the kind of
liquid or gas the mass is in and the shape of the mass. The negative sign just
says that the force is in the opposite direction to the body’s motion. Notice that
this is different from the friction at a surface that we discussed earlier: when an
object moves across a surface, the force of (kinetic) friction is opposite to the
motion, but is independent of its speed.
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Let’s add this drag force to the equation fnet = ma

−kx− bv = ma (12.59)

In terms of derivatives

m
d2x

dt2
+ b

dx

dt
+ kx = 0 (12.60)

This is a differential equation. We’ll solve it using the guess we made in
section 12.1.6.

But before diving into the math, what you expect is that the amplitude
of oscillation decays with time. Let’s say you have a spring oscillating pretty
quickly, say 1 cycle/s. If the amplitude was 1 cm at t = 0, then suppose that
the amplitude is half that, .5 cm, at t = 1 minute. What happens after another
minute, at t = 2 min? Well we expect that it should halve again, and be .25
cm. After another minute at t = 3 min, it should halve again. This describes an
exponential decay of the amplitude. Instead of the amplitude being constant,
it’s decaying with time:

A(t) = A0e
−const t (12.61)

So
x(t) = A(t) cos(ωt+ δ) = A0e

−const t cos(ωt+ δ) (12.62)

Fig. 12.8 shows a plot of an example of such a function, x(t) = e−t cos(2πt)

The green line is A(t) = e−t. It is the envelope of the oscillation. Ob-
viously, depending on the rate of decay of the amplitude, and the frequency,
you’ll get a different picture. But qualitatively, you’ll see an oscillating func-
tion whose amplitude decays away to zero. This should describe weak damping.
We don’t expect this to work too well in molasses. To get a more quantitative
understanding we’ll have to do some more math.

We’ll try sticking x(t) = Aeλt into Eq. 12.60. Here again, A is just a
constant. We already differentiated this function before in Eqs. 12.24 and 12.25
so we don’t have to do it again. So we have

mλ2x+ bλx+ kx = 0 (12.63)

Cancelling the x’s
mλ2 + bλ+ k = 0 (12.64)

This is a quadratic equation for λ. Let’s solve it:

λ =
−b±

√
b2 − 4mk

2m
(12.65)

So we have two possible solutions for λ! They both solve the equation, and we
have to have more information to figure out what to do with them. But for the
moment, let’s look at this equation more closely.

If the drag coefficient, b, is large, then the square root is real. However if
b2 < 4mk, then it becomes imaginary.
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Figure 12.8:

12.4.1 Underdamping: b2 < 4mk

Let’s consider the latter case first. We you get oscillations, we call this un-
derdamping. In this case λ is a complex number. It’s got a real part and an
imaginary part.

The real part is −b/2m and we can figure out the imaginary part by writing√
b2 − 4mk as

√

(−1)(4mk − b2) = i
√

(4mk − b2) (12.66)

So we can rewrite the solution for λ as

λ =
−b

2m
± i

√

k

m
− b2

4m2
(12.67)

The square root is the magnitude of the imaginary part. When b = 0, the
square root just becomes

√

k/m, the normal frequency of oscillation, so it makes
sense to interpret this as a frequency

ω =

√

k

m
− b2

4m2
(12.68)
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which decreases as b is increased.
So

λ =
−b

2m
± iω (12.69)

and the solutions to the differential equation are

x(t) = Aeλt = Ae(
−b
2m

±iω)t = Ae
−b
2m

te±iωt. (12.70)

The ± means there are two solutions here. This is just like our earlier use
of imaginary numbers to solve the simple harmonic oscillator. Remember
Eq. 12.31. The two solutions there were shown to be equivalent to the two
solutions in Eq. 12.32. So the same is true here. The above two solutions are
equivalent to

x(t) = = Ae
−b
2m

t{cos(ωt), sin(ωt)} (12.71)

This is what we guessed above before we plunged into all this math. You just
have an exponential multiplying a sine wave. But now we know the expression

precisely. The amplitude A(t) decays as e
−b
2m

t. What does this constant −b/2m
mean? If it’s zero, there is no decay at all. If it’s big it decays very fast.

Suppose we start with an amplitude of unity, and want to know the time τ

it takes to decay to 1/e ≈ .37 of its original value. We have A(t) = e
−b
2m

t so at
t = 1 we have

e
−b
2m

τ = e−1 (12.72)

or

τ =
2m

b
(12.73)

This is often called the the decay time. We can rewrite the solution in terms of
this

x(t) = Ae−t/τ{cos(ωt), sin(ωt)} (12.74)

As the damping increases, τ decreases, that is, the oscillations damp out
faster. But also note that as the damping b increases, ω decreases, finally
hitting zero. Now we look at what happens past this point.

12.4.2 Overdamping: b2 > 4mk

In this case both roots of λ are real.

λ+ =
−b+

√
b2 − 4mk

2m
(12.75)

λ− =
−b−

√
b2 − 4mk

2m
(12.76)

This means that both solutions decay exponentially

x(t) = {eλ+t, eλ−
t} (12.77)

Fig. 12.9 shows an example of such a decay, x(t) = 1
2 (exp(−2t)+exp(−0.5t)).
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Figure 12.9:

Now as the damping b increases, the two solutions λ+ and λ− become very
different. λ+ → 0 while λ− → ∞ . When λ+ is very small, that means the
decay is very slow. So as you increase the damping b, the decay is slowed down.
This is the opposite that happened in the above case of underdamping. We call
this case overdamping because there are no oscillations, but the decay can be
quite slow because the damping is so high that it’s hard for the mass to move.

So let’s ask the following question. What is the best value of b to choose so
that the mass comes back to equilibrium most quickly. This is important if you
were trying to design shock absorbers for a car. If b is too small it just oscillates
back and forth for a long time without decaying in amplitude much. If b is too
large, like in molasses, or tar, then it takes along time just to move the mass at
all.

It turns out, that the best choice of b, is the critically damped case where
b2 = 4mk. It is at the point straddling the over and underdamped regimes.
We won’t solve this case but Fig. 12.10 shows a plot of the way it looks.

This plots the function x(t) = exp(−t)(1 − t). The green line is a plot of
exp(−t).
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Figure 12.10:

12.5 Resonance

You’ve heard the story of the singer who can shatter a glass just by singing a
particular note real loudly. Well that may actually be true, and it’s an example
of resonance. When you hear annoying buzzing sounds in your car, it is often
something “resonating” with the car engine. When a child, or adult, is on a
swing, they can increase their amplitude of oscillation by “pumping” the swing
at just the right moments. That’s also an example of resonance.

But resonance is even more common than that. Atoms is materials especially
one with colors, resonate when light hits them. Light, by the way, applies a
high frequency periodic force to electrons in a material. A microwave oven
works on a similar principle. The microwaves apply periodic forces to water
molecules causing them to resonate, and hence heat up. You might have seen
some spectacular footage of some huge bridge collapsing right after it was built.
That was an example of resonance. The wind was applying forces at just the
right frequency to get the whole thing to swing wildly back and forth, ultimately
collapsing.

So let’s try to understand resonance. What you’ve got is a mass on a spring
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with some damping. You apply some periodic force at some frequency, and ask
how much the system moves. If you apply it at just the right frequency and the
damping isn’t too big, you’d expect a small force would give a large response.
Let’s try to write down the equation we want to solve. Fnet now includes, the
spring −kx, damping −bv, and an external force Fext = F0 cos(ωt+ θ). We’ve
added in a phase shift of θ because the applied force is not necessarily in phase
with the harmonic motion. We’ll talk more about that below. So

Fnet = − kx− bv + F0 cos(ωt+ θ) (12.78)

which equals ma so

ma+ bv + kx = F0 cos(ωt+ θ) (12.79)

Hmm, this looks even worse than the damped harmonic oscillator because
now the right hand side isn’t zero! Well fortunately there’s a simple way of
figuring this out without too much algebra. The hard way would be to try a
solution of the form

x(t) = A cos(ωt) (12.80)

and plug it into Fnet = ma and solve for A. That is a bit painful so let’s do it
the easier way. It involves the same trick we used earlier, to two dimensionalize
the problem:

ma+ bv + kr = F(t) (12.81)

What does this problem look like? Well we already seen that it involves a
bungee cord with Fbungee = −kr. But now we also have friction Ffriction = −
bv. And now we have an external force F. You can think of this external force
as being applied to the object in some direction and the whole thing rotating
around in a circle.

This is a lot like jetskiing in water with a bungee cord attached to a buoy
shown in Fig. 12.11.

The external force is applied by the motor of the jetski and if it’s pointing
in just the right direction, it’ll go round the buoy in a circular path. The angle
between the jetski and the radius vector stays constant at θ.

We remember that if you consider just the x-component of the two dimen-
sional problem, you should get the 1d problem. Let’s check that it works. If we
consider the x component of ma+ bv+ kr you get max + bvx + kx. That looks
OK. How about F? The angle that this makes with the x axis is ωt+ θ, so you
get an x component of F cos(ωt+ θ). That is the same as F0 cos(ωt+ θ) if you
just make F0 the magnitude of F. So this two dimensional equation has as its
x component the one dimensional equation we want to solve. The radius vector
has an x component x = R cos(ωt). So R = A is the amplitude of oscillation
of the 1d problem. This is all similar to what we did before for simple harmonic
motion in section 12.1.5.

Let’s try to figure out how the radius of the circle R, is related to the force
that’s applied and the angular velocity. Again we’re applying Fnet = ma.
Now the free body diagram is shown in Fig. 12.12.
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θ

R

Figure 12.11:

θ

-kR

-bv

F

Figure 12.12:

So we have

Fnet = − kRî− bωRĵ + F = −mω2Rî (12.82)

Here we’ve used v = ωR and a = ω2R. Solving for F

F = (kR−mω2R)̂i+ bωRĵ = R
(

(k −mω2)̂i+ bωĵ
)

(12.83)
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This tells us the direction and magnitude of the force necessary to keep the
jetski going around the circle. It has a magnitude

F = F0 = R
√

(k −mω2)2 + bω (12.84)

or

A = R =
F0

√

(k −mω2)2 + (bω)2
(12.85)

and

θ = tan−1(
bω

k −mω2
) (12.86)

Good, we’ve now understood the bungee cord - jetski problem, let’s try to
relate it back to the one dimensional resonance problem.

This says that if you apply a force with amplitude F0, that the amplitude
of resonance, A, will just be as given above in Eq. 12.85. Fig. 12.13 plots how
this looks, taking F0 = k = m = 1 and b2 = 0.1.

Figure 12.13:

You see that the amplitude has a strong maximum close to ω =
√

k/m.
Frequencies close to that are at resonance. The smaller the damping b is, the
stronger the maximum, and the sharper the peak.
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Now what about this mysterious angle θ? This says that if you apply a force,
the response to it, x(t), will not be instantaneous by will be shifted in phase by
an angle θ as shown in Fig. 12.14.

T t

θ/ω

x(t)

F(t)

Figure 12.14:

Close to resonance when ω =
√

k/m, you can see that θ = π/2. There is
a 90 degree phase shift between the applied force and the displacement.
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Chapter 13

Liquids

So far we’ve been concerned with trying to understand systems where the answer
involves just a few numbers, for example, the velocity of two balls after they
collide. But what if you put zillions of balls in a box, where they’ll collide with
each other unbelievably fast. Let’s try to figure out the velocities in this case,
NOT! But putting a zillion balls in a box is something that we see all the time.
That’s what’s happening in a glass of water, or molecules in the room you’re
in. Fig. 14.1 shows a simplified 2d version of what we’d like to understand,
where all the circles are moving around in a hopelessly complicated way. Most

Figure 13.1:

of what we see in nature involve systems of this kind. In living organism,
the environment is most often aqueous, so does that mean that we can’t say
anything sensible about them? As it turns out, applying physics to the zillions
of molecules in a liquid, has been pretty successful. This in large part is due
to the fact that energy and momentum are conserved despite the complexity of
the microscopic motion. There are properties of liquids the emerge at a large,
that is macroscopic, scale from all the frenetic motion at a microscopic scale.

When you think about it, liquids are pretty amazing things. You have an
interface between a liquid and the air. If you were an extremely small ant diving
into a glass of water, you’d notice that over just a few Angstroms the density of
molecules increases dramatically as you enter the water from the air. So there
is a pretty well defined interface between these gas and liquid phases, forming

189
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a nice smooth surface, at least on large enough scales.

Another thing you might take for granted, but is pretty amazing, is that
if you let a glass of water sit around for a while, that its surfaces forms an
extremely flat interface. You know that it must be pretty flat because you can
see your partial reflection in it. Try to make a surface that flat by polishing
glass. It’s not easy! Liquids self-organize to be flat. This is just one of their
amazing properties.

There are whole departments of scientists that study liquids, and still there
are a lot of things about that them aren’t completely understood. But there are
loads of things that are, and I’ll go through just a brief introduction to them.
Even so, scratching the surface of liquids is not easy, as it were, but with a few
important concepts, you’ll be able understand them swimmingly.

13.1 Macroscopic quantities

If you were a million times smaller than Antman (and had x-ray vision), in
a glass of water, you’d see a bunch of molecules moving around at the speed
of rocket ships, and then crashing into other molecules, reversing direction in
picoseconds. But at human scales, you see a relatively calm situation. Water
looks like a continuous substance, because we’re not able to see it on small
enough scales. But that’s not necessarily a bad thing. There is physics that
emerges on a scale far larger than that of atoms, but still plenty small. A
molecule of water is a few Angstroms in size, so if we consider a cube a micron
on a side, that’s still billions of molecules. We’ll think about a liquid as being
a continuous substance on this scale.

13.1.1 Density

In that case, we have a pretty well define density for this little cube of water.
And it’s gets to be an even more accurate representation as we increase the size
of the cube. In this chapter, we’ll be thinking about liquids on this scale most
of the time. We recall that the density ρ is defined as the mass per unit volume

ρ = M/V. (13.1)

The density of a liquid varies with external conditions. For example the
density of water at the top of the ocean is about 0.3% smaller than a few miles
down, because of the increase in pressure in the briny deep. It’ll vary with
temperature as well, by a few percent. So in both cases, the variation in the
liquid phase, is pretty small and quite a bit less than the variation you’d get
in a gas. The reason for this is that microscopically, the molecules are already
strongly crowded together due to their attraction to each other. It’s hard to
squeeze them much further together. But to understand this further requires
understanding thermal physics, and we’ll postpone that subject until later.
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13.1.2 Pressure

We just mentioned pressure actually, when we talked about the variation of
density with depth in the ocean. Despite that fact the density of water doesn’t
change as you dive in water, anyone that’s been diving in a swimming pool
will realize that the pressure gets big pretty quickly. But what is the pressure
mathematically speaking? You probably have already seen the pressure P , is a
force per unit area

P = F/A. (13.2)

But what is this force F , and area A?
If you put an object, say a thin slab, in water, what forces act on it? They’ll

be forces that act on all sides pushing in. This force is what gives rise to the
pressure, see Fig. 13.2, in which we have two slabs at different orientations.

p

p
p p

Figure 13.2:

We’ll ignore gravity for the moment (we’ll talk about that below), and as-
sume that there are no currents in the water, so that everything is in equilibrium.
In that case, force on one slide of a slab has to equal the force on the opposite
side. Otherwise they’ll be a net force and the slab will move, but in equilibrium,
it shouldn’t move at all, so those two forces have to be the same. For these thin
slabs, the areas on opposite sides are equal, so that means that the pressure on
the top and bottom of a slab are the same. This will be true irrespective of
orientation. You could build a pressure meter by measuring the force on one of
the surfaces of this thin slab.

So the pressure is the force per unit area acting on a piece of the surface. If
you shrink the size of the slabs to essentially zero (yah yah, you can’t because
they’re atoms, so it won’t be quite zero), then you can think of the pressure at
a point in the liquid. It should be a well defined quantity independent of the
orientation of your slab.
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Atmospheric pressure

The SI unit for pressure Nt/m2 is referred to as a pascal (Pa). How much
pressure are you under at the moment? No, I’m not talking about this course,
but physical pressure. Assuming you’re not reading this on Mars, but on the
surface of the Earth, the pressure at sea level is 1 atmosphere (atm), which is
the same 1.01× 105Pa. Converting this to units we use in the U.S., this is the
same as 14.5lb/in2. That’s pretty big, but only about (1/1000) of the pressure
at the bottom of the ocean in the Marianas trench! We’ll talk about how to
calculate the pressure down there next.

13.2 Liquids in equilibrium

A lot about what’s interesting about liquids is when they’re currents, like what
you see in a river, your blood stream, or water hose. But there is still a lot of
interesting physics when the water looks completely still. This is especially true
when we ask what are the effects of gravity because now the pressure will vary
with depth.

13.2.1 Effects of gravity

As we mentioned above, when you’re in the ocean, the pressure will increase as
you dive down. Let’s try to figure out how the pressure varies with depth. In
Fig. 13.3, we depict a liquid under gravity. At the top is the surface, and the
thin rectangle represents a cylinder of water of length z, starting at the water’s
surface. We want to know what the pressure p is, at the bottom of the cylinder,
as shown by the little black arrow.

Figure 13.3:
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We’re assuming equilibrium, so they’re no currents here. If we were to place
our little slab shown in Fig. 13.2 at the bottom of the cylinder, then it’d feel a
force equal to weight of the water above it plus the air above that. If you’re miles
down in the ocean, that’s a lot of weight! So if the slab is of area A, the total
force will be g times the total mass above it, the mass of the atmosphere Ma,
plus the mass of the water Mw, F = (Ma +Mw)g. As we saw, the assumption
of constant density is a pretty good approximation for the ocean. In that case
because the volume of the cylinder is V = Az,

Mw = ρV = ρAz (13.3)

We have

P =
F

A
=

(Ma +Mw)g

A
=

Mag

A
+

ρAzg

A
(13.4)

The first term Mag/A is the pressure of air at the surface of the ocean, call it
P0, so

P = P0 + ρgz (13.5)

So the pressure increases linearly as you go deeper into the ocean. Again, it’s
worth repeating that z increases as you go further down.

Note this would also work for a swimming pool, or a container of any shape.
The pressure depends only on z and nothing else.

13.2.2 Buoyancy

Another way of seeing this is to consider a massless cylindrical can of cross
sectional area A with its top at vertical distance below the water of z2 and its
bottom at z1 as shown in Fig. 13.4. Consider the forces acting on this can

Figure 13.4:

due to the pressure of the water. The net force due to water pressure on the
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can sides cancel by symmetry. We’re left with only the forces on the top and
bottom. The pressure at z1 and z2 are different, giving a net force up on the can.
This is called the force of buoyancy, first understood by the great scientist and
mathematician Archimedes of Syracuse. If the can was hollow it’d feel a force
pushing it up towards the surface, since the pressure at its bottom is greater
than the pressure at its top. But if we fill the can with water, the can will just
sit there because the can is massless and isn’t doing anything. So we have a
force balance equation that stays that the net force due to the external water
pressure must equal the weight of water in the can

Fnet = A(P1 − P2) = mg (13.6)

And with m = ρV = ρA(z1 − z2) this gives

P1 − P2 = ρg(z1 − z2) (13.7)

or using differences (i.e. ∆) notation:

∆P = ρg∆z (13.8)

Taking the difference of eqn. 13.5 gives the same thing!
Now we can extend this notion of buoyancy to objects of any shape, see Fig.

13.5. We now have pressure acting on the surface of the object in all sorts of

Figure 13.5:

different directions, but this pressure will be higher for points on the surface of
the object that are further down in the water. What’s the net buoyancy force
from all of this? One way to calculate this would be to use vector calculus, but
the easier way is to use the above argument. If the object is filled with water as
well, the net force on it will be zero. So we can equate the weight W pushing
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down to the buoyancy force pulling up. This tells you that the force of buoyancy
is the same as the weight, if the object was made out of water.

How how does this work? Suppose the object was hollow, so it weighed
nothing. Then the force acting on it will be nothing but the buoyancy, that is
the weight assuming the object was filled with water. Denoting the density of
water to be ρW , and the volume of the object to be V , this buoyancy force FB

is
FB = ρWV g (13.9)

If the object is filled with water, the total force on it will be zero, as we discussed
above. If the object is half filled with water, the buoyancy force will be half of
that weight. If the density is half that of water, then the buoyancy force will
still be half of that weight. In other words the total force on the object is the
buoyancy force minus its weight: Fnet = FB − W . If the object is of uniform
density ρO then its mass is ρOV and the net force is

Fnet = (ρW − ρO)V g. (13.10)

This is why when you go into a swimming pool, you seem to weigh less.
Your apparent density is no longer ρO, but ρ0 − ρW , which is pretty small since
we’re largely made out of water.

So far we’ve talked about objects that are completely submerged. What
about floating objects? At some point a buoyant object will rise to the surface.
How far in the water does it float?

In equilibrium, the weight of the object must cancel the force of buoyancy.
So if the object is of mass MO, then a force of MOg will act on it, pointing
down. What prevents it from sinking? The force of buoyancy. The further the
object sinks, the more water it displaces. The way to get the buoyancy force
in this case, is to consider the amount of the object that is now submerged. If
that we filled with water, it would have some mass Msubmerged = ρWVsubmerged.
The buoyancy force is Msubmergedg pointing up. The object will float at a point
where this force ρWVsubmergedg equals the weight M0g.

The above is known as “Archimedes’ principle”: Any floating object displaces
its own weight of fluid.

There’s a slightly easier way to see how this works. Suppose we have a piece
of wood floating the water as shown in Fig. 13.6 on the left. It floats because
the density of wood is less than that of water. Now replace this with something
equivalent for our purposes: A massless impermeable container whose inside has
just enough water in it to give the object mass of the wood. This is shown on
the right. Where will it float? Since the container isn’t doing anything, we can
get rid of it and since the water wants to for a flat surface, you can see where it
floats. You could’ve figured this out without using any of the above math.

Example

Suppose you fill up a glass of water for a friend with a pitcher containing ice
but you inadvertently pour it too far, so that the water is all the way up to the
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Figure 13.6:

rim, and the ice is now floating above the rim. You now watch in terror as the
ice slowly melts. How much water will spill onto the table?

Solution

Maybe you’re hoping that your friend is cool and will just slurp some of the water
to bring the ice down to a comfortable level. But not to worry. Look again at
Fig. 13.6. Gross, a brown ice cube. No matter, just pretend its transparent.
This is your ice. You can think of the ice as shown on the right as being in a
massless container with water inside. But wait! If the ice melts, it’ll shrink in
volume to be exactly the amount of water inside the massless container. Phew!
The water stays at the same level!

13.2.3 Measuring pressure

Now we understand pressure in liquids a bit better, let’s talk about a relatively
simple way that people measure atmospheric pressure. You can use mercury,
which is a liquid, but much denser than water. It’s also not a good idea to play
around with, so don’t try this at home!

Take a glass tube (closed at the bottom), and fill it with mercury. Take
a flat bowl and fill it with mercury as well. Turn the tube upside-down into
the bowl. The mercury will spill out, but won’t go out all the way because
there is essentially a vacuum now at the top of the closed tubed (mercury vapor
pressure is very low). This is shown in Fig. 13.7. How high up, h, will the
mercury column rise above the mercury liquid in the bowl? Let’s consider the
forces on the column of mercury. Unlike the discussion above shown in Fig.
13.4, the pressure at the top of the column is zero is zero. Because pressure
only depends on vertical height, the pressure at the bottom is the same as the
pressure on the surface of the mercury, which is the atmospheric pressure pA.
So it needs to be atmospheric pressure pA at the base of the column, shown in
the figure as the height where z = 0. As we discovered, in Fig. 13.5 the pressure
at this height (with P0 = 0) is ρgh. Therefore

pa = ρgh (13.11)
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Figure 13.7:

Note that the shape of the tube is arbitrary since Fig. 13.5 is quite a general
result. This has been a common way of measuring pressure, so much so, that
there is a unit of pressure torr which is a millimeter’s worth of pressure in this
apparatus. 1 atmosphere is 760torr, meaning h = 760mm (with gravity and
temperature taken to be precise and reasonable values).

13.3 Pascal’s Principle

Let’s ignore gravity and consider a cylindrical container filled with a liquid. At
the top of the container, we place a water-tight piston and apply a force, as
shown in Fig. 13.8. What happens to the pressure? Well we discussed this in
Sec. 13.1.2. The pressure will increase, but be the same at all points in the
liquid.

F

Figure 13.8:

Now let’s include gravity. Our derivation of eqn. 13.8 remains unchanged.
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The pressure still increases, the deeper you go down in the vertical direction.
So the only thing that does change is that pressure goes up everywhere by the
same amount. Eqn. 13.5 is still correct, but now the additive constant P0 will
increase when F increases. This is Pascals principle. If you increase the pressure
by applying a force to some point of a closed system, the pressure everywhere
in the system, even very far away, will go up by the same amount.

13.3.1 Hydraulics

There are many pieces of equipment that use hydraulics to amplify forces. These
include, trucks, cars, cranes, planes, tractors, and elevators. The idea of a
hydraulic lever is that you can apply a force at some point, and have it greatly
amplified. In this way, it’s similar to a pulley.

Fig. 13.9 shows how force amplification can occur. You have a sealed liquid-
filled container.

F
1 F

2

Figure 13.9:

You apply a force F1 on the left piston, and this will then apply a larger
force F2 on the right. The arrows in figure denote direction of motion. You
push down on the piston on the left, and it will move the piston on the right up.
Because, for simplicity the two pistons are at the same heght, then the pressure
on them must be the same. Denoting the two piston areas as A1 and A2, we
have p1 = F1/A1 and p2 = F2/A2. But p1 = p2. Solving fore F2 we have

F2 =
A2

A1
F1 (13.12)

So if A2 > A1, then F2 > F1. In this case, the force you apply F1 is amplified.
But this seems like it’s getting something for nothing. How can you amplify

the force? Doesn’t this violate conservation of energy. This is exactly the same
situation as you get with a pulley, another contraption that can amplify forces.
In both cases, the work you perform in moving piston 1 down is the same as
the work moving piston 2 up. This is because although the force is higher, the
distance it moves is less. This is because the fluid is incompressible. So if you
move the first piston down by d1, the volume change due to this motion is d1A1.
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This loss in volume must be compensated by a gain of volume of d2A2 for the
second piston. So d2 = (A1/A2)d1. So the work done by the second piston is

W2 = F2d2 = ((A2/A1)F1)(A1/A2)d2 = F1d1 = W1 (13.13)

So the work done by the second piston is equal to the work supplied by the first
one.

13.4 Fluid flow

The above discussions focused on fluid that had now currents. But most of the
time fluids do have currents. Let’s start by considering the case where the flow
is in steady state, and laminar. Laminar flow can be understood as follows. If
you inject tiny particles, or dye into one point in the flow, you’ll see that all
particles will move the same way. This is different than what you’d get if the
fluid was turbulent. There the flow is constantly shifting around, so that each
particle that you inject will follow a unique trajectory. Turbulent flow is quite
common, but hard to understand, so we’ll only consider laminar flow here. Also
laminar flow is very important in biology and has a lot of interesting properties.

As discussed in the beginning, fluids are made up of zillions of atoms, and
although they obey well established physical laws, they end up dancing around
in an extremely complicated way. To understand what is happening on a macro-
scopic scale, we’ll use conservation laws.

13.4.1 Conservation of mass

What goes in, must come out. To simplify the discussion, we will assume that
the density of the fluid remains the same. Let’s try to understand what happens
when water flows into a pipe, and then the diameter of this pipe shrinks, as
shown in Fig. 13.10. Here fluid enters the pipe with a velocity of v1. The cross-

v
1 v

2

Figure 13.10:

sectional area of the pipe at that point is A1. Then it exits at some velocity
v2 where the cross-sectional area is A2. Here not only are we assuming laminar
flow, but that the flow is the same at all point in these two cross section. That
is actually a really really bad assumption for a real pipe, but later on, we’ll see
that this pipe is just another one of these silly mathematical constructions us
physicists are so found of making.

So now we’re going to use the fact that the liquid in the pipe conserves
mass. That is, atoms don’t magically appear or disappear out of thin air. This
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means that if we wait a time ∆t, what’s the volume of liquid ∆V1, that passes
into the pipe? In this time, a particle on the left, will have traveled a distance
∆x1 = v1∆t. So this says that ∆V1 = A1∆x1 = A1v1∆t.

On the other side in the same time ∆t, an equivalent volume must emerge
since the density is constant and particles in steady state can’t magically dis-
appear. So ∆V1 = ∆V2 which means that

A1v1∆t = A2v2∆t (13.14)

or

A1v1 = A2v2 (13.15)

Another way of seeing this is to note that from the above discussion, the
volume of water that flows per unit time is

I = A1v1. (13.16)

The flow rate must be constant independent of location. Therefore A1v1 = A2v2
This tells you that as the pipe narrows, the flow must speed up to compen-

sate. You might have noticed this watching rivers and streams.

Example

When you turn on a cylindrical tap of radius r0, suppose water flows out at a
rate of I = 1.0cm3/s. What is the radius of the stream of water as a function
of the distance from the tap?

Solution

The flow as a function of position must be constant, that is I = Av doesn’t
change with height z. But the so A = I/v. What is v as a function of h?
Going back to one dimensional kinetics, you might recall (or using conservation
of energy) that

v2 = v20 + 2gh (13.17)

and v0 = I/A0 = I/(πr20). So

A =
I

√

v20 + 2gh
=

I
√

v20 + 2gh
=

I
√

( I
πr2

0

)2 + 2gh
(13.18)

but A = πr2, so finally

r ==
1/
√
π

(( 1
πr2

0

)2 + 2gh/I2)
1
4

(13.19)

This looks kind of yucky. But you can see that for large h the radius shrinks
proportional to h−1/4.
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13.4.2 Bernoulli’s equation

When we derived the equation of continuity, in Sec. 13.4.1 by looking at the
flow in a pipe of varying cross section, I mentioned that the pipe wasn’t a real
pipe but another one of these physics constructions that us physicists are found
of making. To understand this better, look at Fig. 13.11. This figure represents

v
1

v
2

Figure 13.11:

the flow of water out of a hose pipe in the middle of a swimming pool (assuming
the flow is laminar). It’s circularly symmetric, and in steady state. The green
region is the mouth of the pipe itself. The arrows represent the direction of flow,
and are often used to denote the “velocity field”. The velocity exiting the pipe
is v1 and the velocity will diminish as we move away from the center. The blue
region is some region between the arrowed lines. We can think of the boundaries
of this blue region as forming a pipe.

So we can apply the equation of continuity, eqn. 13.15 to this situation.
Remember that since we don’t have a real pipe, it’s perfectly reasonable that
the velocity on the sides of the pipe is the same as in the middle.

But aside from the equation of continuity, we have something else that we
can use, assuming that energy in the flow is conserved. Now that’s not always a
good assumption. Fluids dissipate energy creating heat all the time, but there
are some situations, where that dissipation can be ignored. In that case we can
use conservation of energy, or more easily, by the work-energy theorem, which
says that the work W = ∆K, the right hand side being the change in kinetic
energy.

If we, using the same variables as in Sec. 13.4.1, consider a short time interval
∆t, fluid will pass into the blue pipe and move a distance ∆x = v1∆t. The work
done is W1 = F∆x. But the force F = p1A1, so W1 = p1A1∆x = p1∆V . This
is the work done on the system in injecting fluid into the swimming pool. At
the other end of the blue region, fluid comes out, and likewise, work is done by
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the system, giving a contribution of W2 = −p2∆V . So altogether

W = (p1 − p2)∆V (13.20)

The kinetic energy of a region of fluid of volume ∆V , so the kinetic energy
of it is K = 1

2mv2 = 1
2ρ∆V v2. Using the work energy theorem yields

∆K =
1

2
ρ∆V (v21 − v22) = W = (p1 − p2)∆V (13.21)

But we can easily add the effects of gravity while we’re at it since the fluid may
change its vertical height giving WG = mg(z2 − z1) = ∆V ρg(z2 − z1). Adding
this to the work energy theorem, gives

p1 + ρgz1 +
1

2
ρv21 = p2 + ρgz2 +

1

2
ρv22 (13.22)

So you can think of p + ρgz + 1
2ρv

2 as a conserved quantity like the total
mechanical energy. It doesn’t change as the fluid flows. Going back to Fig.
13.11, we can now see how the pressure will vary will position. Forgetting again
about gravity, we see that because the velocity is decreasing as we go away from
the center, the pressure must increase to compensate. The circles in that figure
represent lines of constant pressure.

13.5 Viscosity

Bernoulli’s equation applies to situations where there is no dissipation, so-called
”inviscid” flow. But in reality there are many situations where there is a lot of
dissipation. Dissipation in liquids is what gives rise to drag on objects moving
in them. As you drag an object through a liquid, it resists motion: the larger
the velocity, the larger the resistive force. This resistance is a property of the
particular fluid being considered, and is characterized by a number called the
“viscosity”.

To define viscosity, consider the experimental situation shown in Fig. 13.12.
A liquid (blue) is in between two plates (orange), separated by a distance of

vf

h

Figure 13.12:

h. The upper plate is moved sufficiently slowly, parallel to the lower plate at a
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speed v. There is a force exerted on the upper plate by the liquid of f that will
be proportional to v, i.e. f ∝ v. Why is there such a force?

The velocity of the liquid right next to a plate will be the velocity of the
plate. So velocity next to the bottom plate is zero, and the velocity next to
the top plate is v. In between, the velocity will interpolate between those two
values as shown by the arrows in the liquid. The force f on the upper plate
will be zero if both plates are stationary because nothing is moving. But the
force will also be zero if both plates are moving with the same velocity. Why?
Because if you change to a moving reference frame, the plates look stationary
again. So if the velocity in the fluid is constant, independent of position, then
f = 0. It’s the variation of f with position that gives you the force. The faster
the variation, the larger the force. So this suggests that f ∝ 1/h. Also the total
force should be proportional to the area of the plates A. Together with f ∝ v,
we should be able to write:

f

A
= η

v

h
(13.23)

where this proportionality constant η is called the viscosity.
The viscosity depends greatly on the liquid we’re considering. For water

at atmospheric pressure and at 20◦C the viscosity is about 10−3Pa s. For a
gas like helium, or air, at the same pressure, it’s about 2 × 10−5Pa s. On
the other hand, molasses is around 5Pa s. Viscosity plays a big role in how a
fluid behaves. High viscosity fluids are well ... viscous. Not exactly the most
profound statement ever made.

13.5.1 Turbulence

We talked about laminar flow when discussing Bernoulli’s equation, but in re-
ality a lot of the time flow is not laminar, but turbulent. It used to be easy to
see turbulence around you, because people smoked like chimneys. The smoke
would swirl around all over the place, revealing that the disgusting smelly air
in the room was actually highly turbulent. If it was laminar, you would be
able to position yourself to safely sit at arm’s length and the smoke would flow
smoothly flow under the door. But no, the smoke swirls around, forming eddies,
and if you look at those eddies, they frequently break up forming even smaller
eddies. Before you know it, the whole room is smoky.

The same is true for the ocean. When you watch waves crashing on the
shore, this is also highly turbulent flow. On the other hand, for small enough
scales, say inside a biological cell, the flow is laminar. At small scales, viscous
effects dominate. These tend to suppress quick changes in velocity as a function
of position. At large scales however, these won’t be as important and inertial
effects will dominate. These allow for a fluid to swirl around a lot, creating
turbulence.

Figuring out exactly when the flow will be laminar and when it will be
turbulent is very hard, but you can get a back of the envelope idea of when
this will occur based on the “Reynolds number” (invented by Stokes). This is
a dimensionless number that tells us of the relative importance of viscous and
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inertial effects. It depends on a velocity scale, and a distance scale. Think again
about the experiment in Fig. 13.12. If v and h are both large, you’d expect
turbulence. When they’re both small, you’d expect laminar flow as pictured.
Call the distance scale L, and the velocity scale v.

Dimensionally, we can get an idea of inertial effects by thinking about the
relative strengths of inertial and viscous forces. For inertial forces, think of the
fluid as rotating with a radius L at a speed v. Forget about factors of 2, this
is just giving you the right quantity to consider. In that case we know that the
acceleration of this fluid will scale like v2/L. Its mass M ∝ ρL3. So the force
per area A = L2 is

Finertial

A
=

Mv2/L

L2
=

ρL3v2/L

L2
= ρv2 (13.24)

This makes sense because the Bernoulli equation eqn. 13.22 involved a pressure,
which has units of force per area, and also had a term ρv2.

To get the magnitude of the contribution from viscous forces, we use the
definition of the viscosity eqn. 13.23

Fviscous

A
= η

v

L
(13.25)

The Reynolds number is the relative importance of these two forces R =
Finertial/Fviscous which from the above two equations is

Re =
ρvL

η
(13.26)

which is dimensionless.
As an example, think about the flow past a sphere. Far away from the

sphere, the we’ll call the velocity v. The radius of the sphere will play the role
of L. Then if Re > 10, the flow is no longer laminar. Swirly flows will start
appearing around the sphere.

Let’s look at what the Reynolds number is typically in cell biology. The size
of a cell is of order 10µ = 10−5m. The velocity of motion varies, but a fast
moving cell would be sperm, which goes at about 10−4m/s. The viscosity is
seldom less than that of water η ≈ 10−3Pa s, and the density is pretty similar
to that of water ρ = 1gm/cm3 = 103kg/m3. Plugging this into eqn.

Re =
ρvL

η
=

103 × 10−4 × 10−5

10−3
= 10−3 (13.27)

This says that inertial forces are unimportant, and by far the largest factor
contributing to the flow are the effects of viscosity. You don’t see turbulent or
non-laminar flow at the scale of the cell.

13.5.2 Drag on a sphere

Now consider a small sphere (we need low Reynolds number for this to work)
in a liquid moving past it with at some velocity. Let’s say that the velocity far
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from the sphere is uniform and has a value of v. What’s the force on the sphere?
Stokes figured this out and the math is a bit complicated. But he found that
the drag force Fd is

F = 6πηrv (13.28)

Here r is the radius of the sphere. You could change reference frames, and
have the fluid stationary far away, and have the sphere moving at some velocity
v. You’d get the same result, except now the force would be opposite the
direction of motion of the sphere. In this case the formula says that the force
is proportional to the velocity, which is good, because this agrees with what we
learned before, that in a liquid, at small enough velocities, F = −bv where the
drag coefficient b is

b = 6πηr. (13.29)

This tells us that the drag coefficient is proportional to the radius of the sphere.
You might think this is a bit odd. Sure the drag should increase with the radius,
but you’d think it should be the surface area that would come into this equation,
which would give a factor of r2, not r. But no, at small Reynolds numbers the
linear dimension is what comes in.

The fact that it depends linearly may make you wonder what the drag on
other shapes would look like, say a long cylinder. If it’s not the surface are that
comes in, what is it? To a first approximation it’s the same answer as you get
for the sphere, where the length of the cylinder replaces the diameter of the
sphere! There are some additional factors of the cylinder’s radius that come in,
but they do inside a logarithm meaning that the answer depends only weakly
on the cylinder’s radius. This counterintuitive fact has many consequences for
understanding biology at small scales.

Simple viscometer

Suppose you want to measure the viscosity η of a liquid but don’t have tons of
money to do this. How can you get η easily? Take a sphere of known density
and drop it in the liquid. It can be lighter or denser than the liquid. It works
both ways. We found out earlier in the chapter, how to calculate the force
including buoyancy, eqn. 13.10. As the sphere drops (or rises), it will come to
steady state, moving a constant velocity. You can get this velocity by equating
the drag, eqn. 13.28, with this gravitational force:

Fnet = (ρW − ρO)V g = Fd = 6πηrv (13.30)

But the volume V = 4
3πr

3. So we can solve for η

η =
2

9

|ρW − ρ0|r2g
v

(13.31)

where ρW is the density of water and ρ0 is the density of the sphere.
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13.5.3 Example

Kinesin is a microscopic biological motor that walks along a filament called
a microtubule. It is often used to transport payloads inside of a cell that are
attached to it. The average velocity of kinesin without a load is about 0.78µm/s.
Kinesin stops being able to move forward when the force on it is greater than
the stall force. For kinesin with reasonable conditions, that force is about 5pN
(pico-Newtons). How large of a spherical payload can the kinesin carry without
stalling assuming it goes at its average speed? Take the cytoplasm to have 8
times the viscosity of water.

13.5.4 Solution

The drag force from eqn. 13.28 can be equated to the stall force Fs:

6πηrv = Fs (13.32)

giving

r =
Fs

6πηv
=

5× 10−12pN

6π8× 10−3Pas× 7.8× 10−7m/s
= 4.25× 10−5m (13.33)

This is 42.5µm. This is larger than the typical size of many cells (about 10µm).
So kinesin motor molecules have no difficulty carrying any size of cargo in a cell.



Chapter 14

Temperature and Heat

In this chapter we’ll try to understand the properties of systems in the world
around us in a different way that we’ve done previously. Just as with liquids,
we’ll be concerned with a collection of a large number of molecules and what
we can say about them, despite the fact that at a microscopic level, they’re
shooting about and jiggling in an incredibly complicated way. But now we’ll
try to understand specifically, the properties of this complicated jiggling, often
called “thermal motion”. We’ll try to understand the concept of temperature and
how this is closely related to another mysterious but very important quantity,
called the entropy

14.1 Conservation of energy

If you have a bunch of molecules in a liquid or a gas in a well insulated container,
you’ll see a picture of them shooting around like you showed before (Fig. 14.1).
With such complicated motion, how can you say anything at all? The answer

Figure 14.1:

is two fold.

1. First you can use conservation of energy to help out: no matter how
complicated the configuration, the energy does not change.

207
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2. The motion is so complicated that eventually the system will get into
pretty much every configuration with the correct total energy

Let me stress here, that we’re talking about an isolated system, so that it can’t
exchange energy with anything else. If that’s not the case, all is not lost, but it’s
easier to understand my argument when you make sure the system is isolated.
The second point, that the system can get into pretty much any configuration is
a very important idea. This is a non-precise description of “ergodicity”. We’re
accepting that the motion is so fiendishly complicated that we have no hope of
solving for the trajectories of the particles, so much so that the system becomes
“ergodic”, that is, it can get into any configuration that has the right total
energy.

These two statements might not appear to help you much. Suppose you want
to know how the particles all move in time, as we did for projectile motion. Well
then you’re out of luck. But why would you want to know that anyway, since
you couldn’t even write down the coordinates of 1023 molecules to begin with?
What kind of questions could you sensibly ask. Here are a few:

1. What is the average of the speed of a single molecule in a liquid over time?

2. What is the distance between the ends of a DNA molecule, averaged over
time?

3. What is the pressure on the walls of a container of water, again averaged
over time.

These are all questions about the time average of quantities of interest.
We won’t be able to explain the theory behind how you can get all these

things, but it’s worth giving you some idea of how you’d get answers to these
questions. Because when you average over time, and here I’m being a theoret-
ical and saying you can average over a very very long time, you don’t have to
know how the different molecules move in time. You just have to know what
configurations they will get into, and average over those configurations instead.
So you don’t need to solve Newton’s laws, just use the fact that you know all
of the configurations that you need to average over. These are the ones with
the right total energy. This is a huge simplification. Let’s investigate a classic
example of this.

14.1.1 The ideal gas

Understanding and “ideal gas” is actually pretty subtle. We have a container
at constant energy, containing N molecules. The gas is so dilute that we can
effectively ignore any interactions between the molecules. Actually you can’t
really do that or you get total nonsense. What you need to say is that the
interactions are there but very infrequent, so as far as the energy is concerned,
you can ignore configurations where the molecules get close to each other. But
in order for the system to be ergodic, you need them to infrequently exchange
energy. Without that, the energy of every molecule is separately conserved and
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you don’t want that because of course, that’s not physically sensible, a helium
atom’s kinetic energy isn’t the same for all time. So we’ll ignore any potential
energy and just consider the kinetic energy of these molecules. For the moment,
we’ll ignore any rotation kinetic energy. Then the total energy E is

E = K1 +K2 + · · ·+KN =
m

2
(v21 + v22 + · · ·+ v2N ) (14.1)

Ergodicity means that all configurations with constant energy are equally likely.
So to find the time average of v21 , we just need to average over all allowed
configurations, those defined by the above equation that can be rewritten

v21 + v22 + · · ·+ v2N =
2E

m
≡ R2 (14.2)

Here I defined R2 = 2E/m. The reason I’ve introduced the symbol R is to make
you think of a radius. You know that x2 + y2 = R2 describes points that make
up a circle. x2 + y2 + z2 = R2 describe the points that make up a sphere. So
eqn. 14.2 describe points that make up a hypersphere in N dimensions!

Wow, this does sound a bit esoteric. The point I’m making is that intuitively
you can understand the set of allowed points for the molecules the same way
you understand a sphere, except now you’re not in 3 dimensions by 1023. But
a lot of things are the same as for a 3d sphere. We can talk about averages the
same way. The average value of x by symmetry is zero. But suppose you want
to find the average value of x2, call it 〈x2〉 averaging x over all points on the
sphere, you can get this pretty easily by symmetry, without needing to do any
multiple integration. You know that

〈x2〉 = 〈y2〉 = 〈z2〉. (14.3)

You also know that

〈x2 + y2 + z2〉 = 〈R2〉 = R2 (14.4)

Which means that

〈x2 + y2 + z2〉 = 〈x2〉+ 〈y2〉+ 〈z2〉 = 3〈x2〉 = R2. (14.5)

So this says that 〈x2〉 = R2/3.
Now going back to the N dimensional problem, you can see that exactly the

same method will work for that case and that for any of the molecules so that
for any one of them

〈v2〉 = R2

N
=

2E

m
. (14.6)

You could also write this as

〈m
2
v2〉 = E

N
. (14.7)

This says that the energy is evenly distributed among all N particles. Seems
pretty sensible if you think about it.
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14.1.2 Stat Mech vs Thermo

The last section was an example of a statistical mechanics calculation. If you
continue to study physics, you’ll see that you can study quite complicated sys-
tems this way, and understand for example, how it is that liquids can become
gasses, how permanent magnets can form, why rubber is elastic. These are all
examples of things you can do with statistical mechanics. But because you don’t
have two years of physics under your belt, we won’t be able to do that here.

On the other hand, we can think about systems in a “top-down” way. Instead
of thinking of them being made out of atoms all interacting in well defined
ways, we can instead try to understand what can be said about system knowing
empirical properties of it, such as what happens when you compress it, add
energy to it, etc. We can come up with a few very simple postulates (such as
conservation of energy) to allow us to figure out a lot of things that aren’t at all
obvious. This is known as thermodynamics. Stat mech and thermo used to be
taught as two separate subjects but really thermo in principle (and largely in
practice) is derivable from the underlying microscopic laws. Thermodynamics
is a very powerful way looking at systems and we’ll see that you can derive some
pretty amazing results with it.

14.2 Thermodynamics

One of the most important concept in thermodynamics is that of temperature.
Let me stress, that you don’t need to postulate the existence of it, it can be
derived from statistical mechanics, but we’re not going to do that here.

We’re all familiar with hot, and cold, and the concept of temperature. It’s
built into our senses. One thing that you’ll notice is that if two objects are at
different temperatures, like chocolate chip cookies just taken out of the oven, the
two objects, cookies and table, will eventually come to the same temperature.
This might take some time, but this will happen, so make sure not to wait too
long! If you have three objects, A, B, and C, then if A and C are in thermal
equilibrium and B and C are as well, then A and B will also be in thermal
equilibrium.

14.2.1 Temperature Scales

You probably already learned this but it’s pretty easy to convert between
Fahrenheit TF and Centigrade TC . TF = 32+1.8TC . Kind of arbitrary, and not
really worth getting all worked up about this. I know a lot of people that think
people in the US are idiots because they use Fahrenheit to measure temperature.

However us scientists use the Kelvin temperature scale. An object at zero
degrees Kelvin can’t get any cooler. As it turns out the temperature for ice
melting at atmospheric pressure, is about 273◦K. So instead of saying “It’s a
great day out! It’s 20◦C or 68◦F , us scientists say, “It’s 293◦K”. No wonder
no one understands us. Of course we know that we’re simply The Best, because
we use the most sensible temperature scale. Actually, there really isn’t any
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best scale and depending on the problem you study, you may want to use a
completely different scale.

14.2.2 Volume expansion

If you heat up a solid, it will change its size. Most of the time it’ll get bigger
(but not always). If the change in temperature is small, we expect that the
change in volume ∆V , will be proportional to both the total initial volume V ,
and the change in temperature ∆T

∆V = βV∆T (14.8)

where β is the coefficient of volume expansion for the material.
There are many other properties of a material that depend on tempera-

ture, for example, the pressure. From the point of view of thermodynamics we
can take many of these as empirical facts, but now we’ll talk about the laws
of thermodynamics that allow you to deduce interesting relationships between
them.

14.3 Thermodynamic States

How do you characterize the state of a glass of water? On one hand we can
think of it microscopically, and then we’d need to specify all of the positions
and velocities of the atoms that make up the water. Not only is that impossible
to do, but it misses the point that most properties of the water, its taste, its
temperature, its viscosity, you don’t need all that information. What informa-
tion do you need? Basically two things: its temperature and pressure. If you
know that, you’ll have an extremely good idea about all of its other properties.
But you could add in the magnetic field of the earth as well. It’ll make a small
difference to the properties you measure, but for some substances, it’ll make
a big difference. That’s fine, we’d need three parameters, not 1023 and these
parameters in a practical sense define the state of the system.

If you take your glass of water and you heat it up, then cool it back down
to its original temperature, it’ll be indistinguishable from its original state. If
you put it in a plastic bag, and squeeze it, then release it, it’ll also return to its
original state. In all these cases the history of the water is unimportant. There
are systems, like magnets, where history is important (unless you wait for an
extremely long time), but in the following, we’re not considering such materials.

The classic example that is the easiest to understand is a gas in a cylinder
with a piston on top. Unlike the glass of water, you don’t have to worry about
evaporation. We can easily control the volume by moving the piston. We can
raise it’s temperature. There are three parameters that appear to characterize
the state, the pressure, p, volume V , and temperature T . And you can think
of others. An important one is the total internal energy E of the gas. But
if you take a gas and cool it, the pressure will also decrease. So these four
parameters are not independent. You only need two, say P, V . Or V, T will do.
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So will P,E, etc. Graphically we can think about what happens if you slowly
change a system from one state, A, to another, B, and back again to the original
state. This is shown in Fig. 14.2. The initial state is characterized by point A,

p

V

A

B

Figure 14.2:

which corresponds to a pressure value of PA and volume value of VA. Then by
changing external conditions, like the volume, and the temperature, the system
will slowly change, following the path as shown until it ends up at state B. You
can now follow a different path, and end up at state A. These types of diagrams
are crucial in understanding thermodynamics.

14.4 The First Law of Thermodynamics

When you take a cookie out of the oven and put it on the counter, the cookie
cools down. We can say that heat is flowing between the cookie and the rest of
the environment (the counter and the air). We often denote heat by the letter
Q. Heat has the units of energy and is transfered between two objects if there is
a temperature difference between them. Just as with temperature, people often
use a different unit to measure heat, the calorie.

1 cal = 4.184J (14.9)

This shouldn’t be confused with the calories we worry about when we eat too
many twinkies which are “Calories”. The ominous capitalization is because
1Calorie = 1000cal, which quite a lot of energy!

But nevertheless, heat is a form of energy. It’s microscopic thermal energy:
all those molecules crashing into each other and jiggling around like crazy. With-
out understanding the exact motion that they execute, we can use conservation
of energy to say something useful.
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Imagine you have a gas, similar to the one we considered Sec. 14.1.1. The
gas is in a container with a piston at the top maintaining some pressure, see
Fig. 14.3. The side of the container can be places next to another object at a
slightly different temperature, shown on the left in light blue.

Q

dW

Figure 14.3:

If the gas is brought in contact with the blue container, suppose a small
amount of heat δQ flows into the gas from the blue container. This means that
the total energy internal energy, E, of the gas must increase by an amount dQ.

There’s another thing you can do. You can lift up the piston by some small
amount meaning that the gas is doing work δW . Putting this together, we have
that

dE = δQ− δW (14.10)

This is just a restatement of conservation of energy in terms of heat and work.
To understand this better, lets consider the two terms on the right hand

side.

14.4.1 Heat

If you add a small amount of heat Q to a system, say a gas, then the temperature
of the system will increase by some amount ∆T . There’s a relationship between
these two quantities

Q = C∆T. (14.11)

C is called the “heat capacity” and that depends completely on the details of
the system. Even for gas, you get a different result depending on whether it’s
being held in a fixed volume, or under a constant pressure. The heat capacity
also changes a huge amount with temperature.

It tells you how much the temperature rises when you start off with a system
with total energy E, and add in a bit of heat to it dE, that is

C =
dE

dT
(14.12)
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One thing about almost all heat capacities is that they’re extensive. That
means that you expect that the heat capacity will be proportional to how many
particles there are in the system. You can therefore write

C = cM (14.13)

where M is the mass of the system and c is known as the “specific heat”. For
example, for water at room temperature c = 1cal/(g K).

For substances undergoing phase changes, say from solid to liquid, things
are different. Say you have a bunch of ice that you’re trying to melt. You can
add in a substantial amount of heat and all you do is melt some of the ice,
but the temperature doesn’t change. It’ll stay at 0◦C. At this special melting
temperature, we don’t have a linear relationship between heat and temperature.
If you have a gram of ice, you need to add a certain amount of heat to it to com-
pletely melt it. It’s only after you’ve added that heat in, that the temperature
will then increase when more heat is added. The same behavior exists between
other phases as well, such as from liquid to gas phases. So we can define a “heat
of transformation”, L, to transform from one phase to another. Because again
we expect this quantity to be extensive (i.e. proportional to mass), we have
that amount of heat Q that must be added is

Q = Lm (14.14)

For example, for melting ice, L = 3.33 × 105J/kg. The heat of transformation
from liquid water to vapor (i.e. when you boil water) is L = 2.256× 106J/kg.

14.4.2 Work

Consider a container of gas like we did above, and now consider in more detail,
what’s the work that you do when you lift the piston up and let it do work
against a force F , as shown in Fig. 14.4. The work δW = Fdz. But the force is
related to the pressure p and the area of the piston A, F = pA. And the change
in volume of the container dV = Adz. Putting this together, we see that the
work done by our system is

δW = pdV (14.15)

Now we ask what happens if we move the piston very slowly, by a sizeable
amount, so the volume goes from V1 to V2. But as we lift the piston and change
the volume, the pressure in general, will also change, because the pressure is a
function of volume, p(V ). In that case we can write the work as

W =

∫

dW =

∫ V2

V1

p(V )dV. (14.16)

So the work is the integral of the pressure vs volume curve for the initial to the
final volume. This is illustrated in Fig. 14.5. The pressure is some function of
the volume. The exact shape will depend on the path that the experimenters
choose to take, assuming they have the knobs to do it. There are only two
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F

dz

Figure 14.4:

p
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V V1 2

W

Figure 14.5:

knobs you really need, one that adjusts volume, and the other that adjusts
temperature. As discusses earlier in Sec. 14.3, we can take multiple paths to
get between any two states. So suppose we cycle the system by going from a
state A to state B through one path, and B to A through another path, as
shown in Fig. 14.6. How much work in total is done by the system after one
cycle? The work going from A to B is the area under the upper curve (blue plus
green regions). The work going from B to A is the negative of the area under
the lower curve (the green region). It’s negative because we’re going backwards,
from larger to smaller volumes. Subtracting these two area gives the blue area
in the middle. That area is the total work done in one cycle.
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p

V

A

B

Figure 14.6:

How is it that we can get work after one cycle? Isn’t that getting something
for nothing? The answer is that to take these two paths, we’ve got to add and
subtract heat from the system. Some of this net heat is being turned into work.
Is all heat turned into work? As we’ll see later in this chapter, the answer is
no. Thermodynamics puts a rigorous bound on how much heat energy can be
turned into work.

14.4.3 Is heat a parameter?

You can change a systems volume, or temperature, or pressure. You can cycle
around the P − V plane and come back to a system with the same P and V ,
and therefore T . These parameters all characterize the thermodynamic state
of the system. But we’ve also talked about heat. Does the system contain a
certain amount of heat? In other words, if you boil an egg, does that egg now
contain a heat value of 30, 000J?

Initial attempts at thermodynamics the “caloric theory of heat” did ascribe
a heat content to objects. There was suppose to be some special fluid that would
run from cold to hot bodies causing them to heat up. This would mean that
heat was conserved. But then Count Rumford started thinking about all the
heat that was generated from boring cannons. He saw that you could change
mechanical energy into heat, so heat was no conserved. So a glass of water on
the table does not have a well defined heat that characterizes its state. It has a
well defined temperature, volume, and internal energy. There doesn’t seem to
be a way of dividing up the internal energy into a heat and non-heat part.

But it might seem to you as if there should be something similar to heat
that tells you about the state of a system. There is, and it’s called the entropy.
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14.5 Entropy

Let’s start off by revisiting the work that you do in a cyclic process as shown
in Fig. 14.6. Work is clearly not a state of the system either. Because after
going around a loop in the P-V plane the work done is not zero. But suppose
we wanted to make something related to work into a state of the system. We
know that δW = PdV , so dV = δW/P . What happens to δW/P when we go
around a loop? Well the integral of dV around a loop is zero. First the volume
gets bigger, then it gets smaller, returning to the same size. So we’ve figured
out a way to make δW into something that involves a change in the system
state: you just divide it by the pressure.

Similarly if we think about going around this loop and monitoring δQ, as
Count Rumford showed, the change in Q is not zero. The mathematical way to
fix this up is not to consider δQ but δQ/T , where T is some function that has
been designed to make sure that we get zero when we go around the loop. As it
turns out this is also a definition of the temperature! Something that we haven’t
considered until now, despite having talked about it at some length. We’ll call
this quantity the infinitessimal change in entropy, dS

dS = δQ/T (14.17)

When we fo between two states, A and B, as shown in Fig. 14.6, we can compute
the change in the entropy S by adding up the infinitessimal changes dS as we
go around:

SB − SA =

∫ B

A

dS =

∫ B

A

δQ/T (14.18)

We can now rewrite the first law of thermodynamics eqn. 14.10

dE = TdS − pdV (14.19)

14.5.1 How do you calculate the entropy?

Ludwig Boltzmann first figure out how to calculate the entropy from the mi-
croscopic dynamics of atoms. A lot of people thought he was talking nonsense,
but a lot of them, for example Ernst Mach, didn’t believe that atoms existed.
But Boltzmann’s formula has stood the test of time though it’s a little hard to
explain in an introductory course.

Let’s go back to the ideal gas of Sec. 14.1.1 Remember we said that allowed
configurations were ones of constant energy. This constraint meant that the
velocities must be on the surface of a N -dimensional sphere as shown in eqn.
14.2. We also have the constraint that all molecules must be in the box. Phase
space is this N dimensional world where we describe the particles by their
positions and velocities: {r1, r2, . . . , rN ,v1,v2, . . . ,vN}. We want to calculate
the volume allowed in this high dimensional space. For the positional part
we have the volume is V N . For the velocities it’s proportional roughly to RN
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(remeber that.R2 = 2E/m). The total volume Ω multiplies these two volumes
together and the this volume depends on energy E, N , and V as

Ω ∝ V NE3N/2 (14.20)

We don’t care about multiplicative constants like m. There is also a prefactor
dependence on N but we’ll see that this won’t come into our discussion.

The entropy, according to Boltzmann is

S = kB lnΩ (14.21)

Where kB is called “Boltzmann’s constant” with a value of kB = 1.38 ×
10−23m2kgs−2K−1. This is a general formula, if Ω is the volume of accessi-
ble phase space, but mercifully, here we’ll only consider the ideal gas phase
space volume.

For an ideal gas, this

S = constant+NkB(lnV +
3

2
lnE)] (14.22)

It might seem strange that this weird formula is the entropy, and even though
this wasn’t easy to follow, we’ll see that it does actually work!

Going back to the first law of thermodynamics, eqn. 14.19, let’s first of all
consider cases where we keep the volume constant, so dV = 0. Then we have
dE = TdS. This says that

1

T
=

dS

dE
(14.23)

Differentiating eqn. 14.22, realizing that V isn’t changing, we only have to deal
with the second term in parentheses, giving

1

T
= NkB

3

2E
(14.24)

or

E =
3

2
NkBT (14.25)

This gives the relationship between internal energy and temperature. The
heat capacity at constant volume CV is calculated by differentiating this ac-
cording to eqn. 14.12:

CV =
dE

dT
=

3

2
NkB (14.26)

This says that the heat capacity doesn’t depend on the temperature. This
is a well known fact for dilute gasses, that aren’t too low in temperature where
quantum effects play a role.

Now let’s keep the energy E constant and vary the volume V . Again using
the first law of thermodynamics, eqn. 14.19, we have dE = 0 = TdS − pdV so

TdS = pdV (14.27)
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This says that with the energy kept constant:

p

T
=

dS

dV
(14.28)

Differentiating eqn. 14.22, realizing that E isn’t changing, we have

p

T
= kB

N

V
(14.29)

which is the ideal gas law pV = NkBT . This also is experimentally well verified
for dilute gasses.

We see that if we know this mysterious quantity, the entropy we can calculate
a lot of properties of the system. We can deduce how the total internal energy
depends on temperature, and how the pressure depends on the volume and the
temperature.

Unlike heat the entropy is a function only of the state of the system. When
you slowly move a piston or add heat to an ideal gas, as shown in going from A
to B in Fig. 14.6 the entropy will change. If you go back to your original state,
along any path sufficiently slowly, your entropy will return to its intial value.

14.6 Reversible versus Irreversible processes

In the above figures, such Fig. 14.6, we thought about taking a system very
slowly from one configuration to another. If for example, you take an ideal gas
with a piston shown in Fig. 14.4, and slowly increase the height of the piston,
what’s the change in entropy? Here the gas and cylinder are isolated, so there’s
no flow of heat in or out of the gas. So δQ = 0, therefore dS = δQ/T = 0. So the
entropy doesn’t change ∆S = 0. This is called an adiabatic process. However
work is performed by the gas as it expands so what’s its final temperature?

Since we know the form of the entropy from eqn. 14.22 then

S1 = const.+NkB [lnV1+
3

2
lnE1] = S2 = const.+NkB [lnV2+

3

2
lnE2] (14.30)

Rearranging this we have

ln(V1/V2) =
3

2
ln(E2/E1) (14.31)

or
E2 = E1(V1/V2)

2
3 (14.32)

And since from eqn. 14.25 we know that E ∝ T , so

T2 = T1(V1/V2)
2
3 (14.33)

So if V2 > V1, T2 < T1: the system cools down. This makes sense since it’s
taking some of its internal energy and doing work as it expands out. This is



220 CHAPTER 14. TEMPERATURE AND HEAT

called adiabatic expansion, and during this process, we see that the system cools
down.

Now instead of doing this, suddenly move the piston out from V1 to V2. You
don’t need to do that if you’re not keen on lightning fast movements of heavy
and expensive experimental equipment. You could install a valve between two
chambers, one filled with gas and one empty, and suddenly open the valve. The
gas will flow rapidly into the second chamber. The physics of these two problems
is much the same. So in this case, let’s compute the entropy change.

Because no work is being done, the internal energy stays the same E1 = E2.
You can also see from eqn. 14.25 that means the temperature stays the same.
The system no longer cools down. We can again use the formula for the entropy,
eqn. 14.22 to see that the change in entropy is

∆S = S2 − S2 = NkB lnV2/V1) (14.34)

For this experiment to work, V2 > V1, which means that ∆S > 0.
These two processes differ in a fundamental way because the first one was

done slowly and the second quickly. The first one is a reversible process, in
that you can reverse all the steps and end up in your initial state. The second
process is not reversible. If you try to push the piston back quickly, molecules
will be in your way, ad you certainly will not end up in your original state.

The fact that the entropy change of the gas was zero when we expanded
slowly was convenient but not necessary. If we had connected the cylinder with
gas to a ”heat bath”, that is a big system whose temperature was very well
fixed, we could still slowly expand the gas. The gas would do work, but would
not cool down. The overall change in entropy of the gas would be non-zero. But
heat would flow in from the heat bath. If you consider this composite system,
it is still isolated from the outside world so δQ = 0 for the entire system so that
dS for the whole system is zero. The entropy will not change. You could easily
reverse the process and end up in your initial state.

So what is important here is that your process is reversible when you change
it slowly enough.

14.7 Second Law of Thermodynamics

The example with reversible versus irreversible processes can be generalized to
lead to the mysterious and profound second law of thermodynamics. There are
many equivalent ways of writing the second law, but we can think of as follows.
If you have an isolated system, completely insulated from the outside world,
and it is evovling from some initial to a final state. The change in entropy of
this sytem ∆S ≥ 0. ∆S = 0 only if the process is reversible.

What do you do if the system isn’t isolated from the rest of the universe?
Well then you’d say that the entropy of the universe will always increase (or
remain the same). So if you smash a cup, that’s an irreversible process. You’ve
increased the entropy of the universe by smashing it. If you noticed the shards
of glass spontaneously coming back together and reforming your grandma’s
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precious china in a pristine state, then without an external agent of some kind
helping to do this, you’ve witnessed a violation of the second law. Sorry, that’ll
never happen.

Many physicists believe that the arrow of time that we see in the microscopic
world, is a consequence of the second law, because the microscopic equations
(e.g. Newton’s laws) are time symmetric. The increase in entropy that we see is
related to the initial conditions of the universe. This is a fascinating topic, but
one that probably should be postponed until you’ve taken more physics classes.
Hopefully that’ll happen.

14.7.1 Heat engines

Let’s discuss how this second law helps us undestand engines better. Specifically
engines powered by heating and cooling. Engines are cyclical, after one cycle,
the engine should return to the state it started from. For a heat engine, it should
take heat from a high temperature source, and use that to extract usable work.
We’ll make this high temperature source a heat bath. As we discussed above,
a heat bath is so big that its temperature stays the same. Heat that flows into
or out of it, does not affect its temperature.

The only thing extra thing that we need to consider is waste heat. As we’ll
see, not all the heat can be turned into work, and the remaining waste heat
will be deposited in another heat bath, at some lower temperature. Call the
higher heat bath temperature TH , and the lower one TL. This engine is shown
schematically in Fig. 14.7.

The engine shown as the yellow circle in the middle, is periodically in contact
with the upper heat bath, the lower one, or none at all. The engine itself can be
very simple, for example just the simple gas with a piston shown in Fig. 14.3
that is sometimes in contact with a heat bath, like the one shown in light blue
in that figure. The engine operates very slowly so that it is reversible. These
are the four stages of the engine:

1. The engine at temperature TH is put in contact with the upper bath
at the same temperature, and expands out at constant temperature (i.e.
isothermally) doing some work.

2. It is then disconnected from the bath TH and continues to expand, thus
doing work, as it cools. Eventually the gas lowers its temperature to TL.

3. The engine is now put in contact with the lower bath at temperature TL,
and work is done on the engine (not by the engine) to contract it down in
volume.

4. It is then disconnected from the bath TL and continues to be compressed,
now raising its temperature until finally it ends up back at a temperature
of TH .

This is called the “Carnot” cycle. The engine is doing work in its first two
stages, and then having work done on it in the last two. Altogether however,
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it’ll do a net amount of work. How much work will it do? Because its reversible,
we can analyze the entropy change in all of these stages. The total change in
entropy of the engine by itself (not including the heat baths) is zero because its
initial and final states are the same. But what is the change in entropy of the
heat baths?

In the first stage, the temperature is constant, and so since dS = dQ/T ,
the change in entropy for the upper part of the cycle will be ∆SH = −QH/TH ,
Where QH is the heat extracted from the upper reservoir. Likewise in the third
stage, the ∆SL = QL/TL, where QL is the heat added to the lower reservoir.
But conservation of energy tells us that the heat coming out of the top reservior
must either become work, or waste heat, so

QH = W +QL (14.35)

We can define the efficiency η as the ratio of the work done to the heat extracted
from the upper heat bath

η =
W

QH
= 1− QL

QH
(14.36)

The last equality comes from rearranging eqn. 14.35.
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Seeing that this process is reversible, ∆SL +∆SH = 0, which says that

QH

TH
=

QL

TL
(14.37)

implying that
QL

QH
=

TL

TH
(14.38)

Using this in our expression for η gives that the efficiency is

η = 1− TL

TH
(14.39)

If we were to include irreversibility in the derivation, in that case, the total
entropy change needs to be positive, and one can show that the efficiency must
be less than this maximum Carnot efficiency.

Because the Carnot cycle is reversible, it can be run backwards. It can
be shown that there is no way of beating this efficiency. Therefore we have a
thermodynamic bound on how efficient you can make an engine! The bigger the
ratio of the temperatures TH and TL, the more efficient the engine. But if these
two temperatures are similar, the efficiency will be low.

Using these kinds of arguments, you can reformulate the second law multiple
ways. One is that you can’t take heat from a single heat bath, say the ground,
and turn this into work. If you could do this, you’d have a great source of
energy. It doesn’t violate conservation of energy, but it does violate the second
law of thermodynamics. So don’t believe any snake oil salesmen that want you
to invest your college fund this kind of invention.

14.8 Dynamics at finite temperature

14.8.1 Speed of molecules a gas

Earlier when we talked about the escape velocity from the Earth’s gravitational
field, we mentioned a formula for the speed of molecules as a function of tem-
perature and their mass. Now we’ll be able to derive how fast they actually
move.

We have all the elements necessary to do this. For a gas with N molecules, we
know from eqn. 14.7 that the center of mass kinetic energy of a single moelcule
is the total energy E/N . And we also can relate E to T using eqn. 14.25. So
we get

〈m
2
v2〉 = E

N
=

3

2
kBT. (14.40)

We’re interested in the root mean square (RMS) velocity of a molecule. Why
not just its mean velocity? Because that’s zero. What is normally used to get
an idea of the magnitude of the speed of a single particle is

√

〈v2〉. We can get
that be rearranging the above equation:

√

〈v2〉 = E

N
=

√

3

m
kBT . (14.41)
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This says that the RMS velocity is ∝ 1/
√
m and also increases with temperature.

For nitrogen or oxygen molecules at room temperature, this is about 500m/s.
Pretty darned fast! But the bigger the molecule, the smaller this RMS velocity.

But this is just a measure of the speed you’d expect to find if you measured
the velocity of a lot o molecules. Suppose you want more than that. Some of the
molecules are going left, some are right, some fast, some slow. Sounds like Dr.
Suess. The way to quantify what you see is to do a histogram: how likely is it
for you to find that a molecule has its x component of the velocity vx, between
two values vx and vx + dvx. This distribution was worked out a long time ago
and is known as the Maxwell-Boltzmann distribution:

P (vx) ∝ e
−

v2
x

2mkBT (14.42)

A plot of this is shown in Fig. 14.8. This is a Gaussian distribution with

P(v )x

vx0

σ

Figure 14.8:

standard deviation σ =
√

kBT/m.
This gives you a histogram of how likely it is for vx, but vy and vz look the

same. They’re also independent, that is, if you found a certain value of vx it
wouldn’t change the odds for vy and vz.

In a gas, the velocity remains pretty much constant until it collides with an-
other molecule, and in normal conditions, this distance, commonly characterized
by the “mean free path”, can be rather large. In air under normal conditions,
it’s around 700A,

The velocity of molecules in a liquid follows the same Maxwell-Boltzmann
distribution. But because of frequent collisions, the mean free path is typically
of order of Angstroms.

Now we can ask what happens on a large timescale to a molecule as it
bounces around colliding with other molecules.
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14.8.2 Diffusion

We’ll first think about how individual molecules move in a liquid or a gas, and
then ask how large collections of molecules move. For example, if you put of
drop of dye in water, what will it do after some time?

Random walks

If we tag one molecule, and what it move through a liquid or a gas, what will we
see? Probably not much unless you’re wearing really thick glasses, but suppose
you could see a small molecule, or how about more realistically, something quite
a bit larger, like a protein that is fluorescing. The molecule collides with others.
Every time it does, it shifts its direction. Because the motion these small scales is
so incredibly complicated, you can think about it as being pretty much random.
Let’s come up with a simple model of this random motion.

Let’s say the the molecule undergoes a collision at regular time intervals of
∆t. If the molecule’s position at time t is rt, then its position after the next
collision is

rt+∆t = rt +∆rt (14.43)

We’re saying that the molecule steps in a random directon ∆rt. We choose this
vector to in a random direction that changes every time it collides. We can use
the same root mean square trick to characterize the behavior of ∆rt. Say we
want typically for it to go a mean free path length l.

〈|∆rt|2〉 = l2 (14.44)

What we’ve just done, is describe a random walk. The molecule will move in
a random direction every time it takes a “step”. The outcome will look random
but a typical random walk will have a characteristic look to it, as shown in Fig.
14.9.

If a random walk starts at some origin and then goes for N steps, where will
it be? It could be going in any direction so on average, it hasn’t gone anywhere.
But from looking at a random walk, you see that is seems to get further and
further away from its starting point, the longer you let it walk. The way to
characterize this is by looking at squares as we’ve been doing of late.

〈|rt − r0|2〉 = Nl2 (14.45)

So the RMS distance it goes is propotional to
√
N . The longer the walk, the

further, on average, that the particle goes. But it’s not a linear function of the
number of steps, it is proportional to

√
N . Now the time that has elapsed after

N steps is t = ∆tN , so

〈|rt − r0|2〉 =
l2

∆t
t (14.46)

We can define a diffusion coefficient D = l2

6∆t so that

〈|rt − r0|2〉 = 6Dt (14.47)
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Figure 14.9:

The diffusion coefficient of a molecule varies greatly depending on its size, and
the environment that it’s in. It’s is very important in many contexts, including
many situations in biology.

Many particles

Now consider many particles diffusing at the same time. To illustrate this,
consider a tiny drop of dye inserted into water. Each molecule of dye will follow
a random walk, and with many you’ll see the average behavior: how the density
of the dye spreads out over time. Fig. 14.10 shows snapshots of the density
of molecules that are initially added in a tiny drop. As time progresses, the
molecules spread out. The colors represent density with red being the highest,
yellow intermediate, and blue being the lowest. The way the spreading occurs
can be modelled very well mathematically, but we won’t discuss diffusion in this
level of detail here.

If you looked at a slice of the density of dye particles, you’d see they’d be
clustered around their starting point. As you waited, the cluster would get
more and more spread out. Fig. 14.11 shows the distribution of dye particles
P (x) at three separate times. As you progress to longer times, the particles
will continue to spread indefinitely, but they spread slower and slower. This
is because the width of the distribution obeys diffusive scaling, which we said
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above was propotional to
√
t and not t. If you plot

√
t you see it flattens out.

Diffusion and Drag

Einstein found a relationship between the diffusion coefficient of a particle in
a fluid, and its drag coefficient. Remember that the drag coefficient b is the
coeffient in the formula relating force F you get when you drag an object with
velocity v in a liquid: F = −bv. He should through quite a profound argument
that

D =
kBT

b
(14.48)

It might seem a bit surprising that diffusion and drag are related. You might
think that it’d be possible to have some situations where a particle could could
have little drag and also not diffuse quickly. The only way to do that is to lower
the temperature.
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