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In this paper, we investigate and compare two well-developed definitions of entropy relevant for describing
the dynamics of isolated quantum systems: bipartite entanglement entropy and observational entropy. In a model
system of interacting particles in a one-dimensional lattice, we numerically solve for the full quantum behavior
of the system. We characterize the fluctuations and find the maximal, minimal, and typical entropy of each type
that the system can eventually attain through its evolution. While both entropies are low for some particular
configurations and high for more generic ones, there are several fundamental differences in their behavior.
Observational entropy behaves in accord with classical Boltzmann entropy (e.g., equilibrium is a condition of
near-maximal entropy and uniformly distributed particles, and minimal entropy is a very compact configuration).
Entanglement entropy is rather different: Minimal entropy “empties out” one partition while maximal entropy
apportions the particles between the partitions, and neither is typical. Beyond these qualitative results, we
characterize both entropies and their fluctuations in some detail as they depend on temperature, particle number,
and box size.

DOI: 10.1103/PhysRevA.101.052101

I. INTRODUCTION

There are a number of distinct notions of entropy through-
out physics—including, for example, definitions by Clausius,
Boltzmann, Gibbs, von Neumann, Bekenstein-Hawking, and
others. Often these notions qualitatively and quantitatively
coincide in the limits of large numbers of particles in equi-
librium under some set of constraints. Yet, physical systems
are commonly in states that are far from equilibrium from the
standpoint of fundamental physics. This raises the question
of how these entropies differ out of equilibrium, to what
degree their nonequilibrium behavior carries over from the
equilibrium case, and how they correspond with our common
notions of entropy such as a measure of disorder, an ability to
perform work, or of the information content an observer has
about the physical system.

In this paper, we address these questions, by studying
numerically the out-of-equilibrium behavior and the extreme
fluctuations of two well-developed notions of entropy that are
relevant and interesting in isolated thermodynamic quantum
systems.

The first of the two entropies we consider is the entangle-
ment entropy [1–4], which is a well-known entropy measure
that quantifies the amount of nonlocal correlation between a
subsystem and its compliment. It has a wide range of use
and is important in understanding thermalization in isolated
systems [5–7], quantum correlations and phase transitions
[8–10], the holographic principle, and black hole entropy
[11,12], as well as quantum information theory [13–15].
The second entropy we consider is the observational entropy
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[16–18], which is a generalization of Boltzmann entropy to
quantum systems. Originally introduced by von Neumann
[19,20] as a resolution to the fact that the [von Neumann] en-
tropy does not increase in isolated systems, then briefly men-
tioned by Wehrl [21] as coarse-grained entropy, observational
entropy has experienced a significant resurgence recently: It
was generalized to multiple coarse-grainings [16,17], found
to dynamically describe thermalization of isolated quantum
[17,22] and classical [18] systems, discussed in relationship
with other types of entropies [23], found to increase under
Markovian stochastic maps [24], and argued for as a natural
candidate for entropy production [25] because its definition
does not need an explicit temperature dependence.

Fluctuations in entropy were discussed far before these
two types of entropy were introduced. The concept of entropy
itself originated from Clausius, who laid the groundwork for
the second law of thermodynamics in the mid-19th century.

It was Boltzmann who interpreted this concept statistically
by inventing the well-known H-theorem [26], which then
led to a new definition of entropy that makes use of the
statistical weight of the macrostate; for a given macrostate,
the Boltzmann entropy is defined as SB = ln �, where � is
the number of constituent microstates. If the macrostate is an
energy macrostate, this entropy is equal to thermodynamic
entropy of the microcanonical ensemble [27–30] and is pro-
portional to Clausius’s entropy for systems in thermal equi-
librium. Considering general (not necessarily energy) coarse-
grainings, Boltzmann entropy is typically time dependent and
able to describe systems out of equilibrium, unlike the original
definition of entropy [31].1

1Note that when we make comparisons with the Boltzmann en-
tropy, we actually mean the definition with general coarse-graining,
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Boltzmann postulated that his entropy (the negative of the
quantity H) always increases, and did not mention anything
about possible downward fluctuations. This was criticized by
Zermelo, and Boltzmann explains in a later letter [32] that
fluctuations in entropy are indeed unlikely but possible. For
example, particles can in principle spontaneously contract into
a small space (e.g., corner of a room), and correspond to
a macrostate with lower (Boltzmann) entropy. This laid the
groundwork for the study of fluctuations in entropy.

Much later, the relations that constrain the probability dis-
tribution of entropy fluctuations, i.e., the fluctuation theorems,
became one of the most significant discoveries in nonequi-
librium statistical physics [33–37]. Fluctuation relations for
closed [38–40] and open systems [41–43] pertain when an
external force drives the system out of equilibrium.

These studies do not, however, explore how high or low the
entropy of a quantum system can get if it has access to long
timescales; this is the focus of this paper. We do this for an
isolated system, meaning that there is no exchange of energy
or particles between the system and the surrounding, and the
system evolves unitarily in the absence of any external drive.
We also examine what the states with such extreme entropies
looks like, how they compare for different types of entropies,
and how they depend on system size and inverse temperature.

For generic (i.e., nonintegrable) systems and at high tem-
perature, entanglement entropy is equal to the thermodynamic
entropy of a subsystem when the full system is in thermal
equilibrium [5,7,44–46] (with some corrections depending on
the size of the system and strength of the interaction term).
One might be tempted to infer that this entropy behaves
similarly to Boltzmann entropy, even far from equilibrium.
Howeve,r the studies here of the extreme cases show that
entanglement entropy behaves very differently from that of
Boltzmann entropy.

For example, there are macrostates with very many mi-
crostates that correspond to minimal entanglement entropy
and macrostates with very few microstates that correspond
to maximal entanglement entropy. This shows that outside of
equilibrium, entanglement entropy is fundamentally different
from Boltzmann’s idea of entropy. A type of observational
entropy, SxE, on the other hand, associates larger entropy with
larger macrostates, in accordance with Boltzmann.

The paper is structured as follows. In Sec. II, we introduce
the model at hand as well as the entropies under study. Next,
Sec. III, we examine the probability distribution of entropies
over long-time unitary evolution of the system and find the
minimal and maximal values of entropy, given infinite time.
We then compare the states with minimal, maximal, and aver-
age entropy. In Secs. IV and V, we investigate the dependence
of extreme values of entropy on system size and inverse
temperature, respectively. We find that observational entropy
never reaches values significantly below 1/2 of its maximum
value, as argued in a previous study [47]; this is in contrast
to entanglement entropy of the small subsystem, which can
reach values very close to zero in the limit of large system and

not with energy coarse-graining which gives what is known as sur-
face or microcanonical entropy, which stays constant in an isolated
system.

FIG. 1. A lattice of size five sites and three particles is shown.
The right-hand side of the figure illustrates the hopping terms t
and t ′, i.e., particles move to the nearest-neighbor (NN) and next-
nearest-neighbor (NNN) sites, respectively. The left-hand side of the
figure shows the interactions of strengths V and V ′ between NNs and
NNNs, respectively.

bath sizes. In Sec. VI, we provide numerical evidence that the
result of Ref. [47] is correct in the case of a physical system
such as a fermionic lattice. Finally, in Sec. VII, we connect the
results of Secs. IV and VI: We show that for a highly localized
state—i.e., a state for which the probability of localization
in a small region is maximized—has minimal observational
entropy, but not entanglement entropy. A short introduction to
observational entropy can be found in Appendix.

II. PRELIMINARIES

In this paper, we consider a system of Np spinless fermions
in a one-dimensional lattice of size L with hard-wall boundary
conditions. The Hamiltonian describing fermions in L sites is

Ĥ =
L∑

i=1

[−t ( f †i fi+1 + H.c.) + V n f
i n f

i+1

− t ′( f †i fi+2 + H.c.) + V ′n f
i n f

i+2]. (1)

(Due to hard-wall boundary conditions, terms with fL+1,
n f

L+1, fL+2, and n f
L+2 are not included.) Here fi and f †i are

fermionic annihilation and creation operators for site i and
n f

i = f †i fi is the local density operator. The nearest-neighbor
(NN) and next-nearest-neighbor (NNN) hopping terms are,
respectively, t and t ′ and the interaction strengths are V and
V ′ as illustrated in Fig. 1.

In all simulations, we take t = t ′ = 1.9, V = V ′ = 0.5.
In most simulations, we take the inverse temperature to be
β = 1/T = 0.01 (the reason for this choice is discussed in
detail in Sec. VI) with exceptions in Figs. 6 and 7, where
we illustrate the dependencies on temperature. We take the
number of particles Np to be either two or three and we use
different system sizes L. The eigenvalues and eigenvectors
of relevant Hamiltonians are computed using exact diagonal-
ization. Using this method, however, limits us to small size
systems due to the exponential rise in computation time and
memory requirements with system size, hence the use of only
two or three particle systems.

For entanglement entropy, we consider a bipartite system
with Hilbert space HAB = HA ⊗ HB, where A and B label the
two partitions. Entanglement entropy is then defined as

Sent (ρ̂AB) = −tr[ρ̂A ln ρ̂A], (2)

where ρ̂A = trB[ρ̂AB] is the reduced density matrix. This en-
tropy measures the amount of correlations, or “entanglement”
between A, the subsystem of interest, and B, the bath. We take
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sizes of A and B to be �x = 4 and L − �x = L − 4 sites,
respectively. The exception to this is in Sec. VI, where we
consider the smaller subsystem to be of size �x = 5 sites
for the subsystem to be large enough to contain all Np = 3
particles.

It is worth mentioning that there are other definitions
of entanglement entropy in which the system has multiple
partitions and the entanglement entropy of the system is the
sum of the entanglement entropies of each partition, i.e., the
entanglement of each partition with the rest of the system
[5,48,49]. However, entanglement entropy is most commonly
used in the context of bipartite systems in the literature; for
example, in relation to the Bekenstein-Hawking entropy of a
black hole where the existence of a horizon leads to the bipar-
tition of the degrees of freedom on a Cauchy surface [50].
It is also common to use in studying quantum information
protocols [51,52] and understanding phases of matter [53,54].

Next, we consider observational entropy with position and
energy coarse-graining [16–18]:

SxE(ρ̂) ≡ SO(CX̂ ,CĤ )(ρ̂). (3)

The positional (configuration) coarse-graining CX̂ ≡
CN̂1⊗···⊗N̂m

defines the partitions of the system (regions),
and corresponds to measuring the number of particles in
each of the m regions. Energy coarse-graining CĤ is the
coarse-graining given by energy eigenstates of the system,
corresponding to measuring the total energy. In contrast
with the entanglement entropy, there is not a subsystem or a
bath; instead the entire system is divided into equally sized
partitions. We set the size of each partition to be �x = 4, so
in a system of size L, there will be m = L

�x = L
4 number of

partitions.
This entropy can be interpreted as “dynamical” thermody-
namic entropy: It approximates the sum of thermodynamic en-
tropies of each partition [17,18]. As these partitions exchange
particles and/or heat, this entropy rises to thermodynamic
entropy of the entire system, which corresponds to partitions
being in thermal equilibrium with each other. Therefore, SxE

can be loosely interpreted as a measure of how close to
thermal equilibrium these partitions are. Precisely, it is an
entropy that an observer would associate to a system where
m partitions are allowed to exchange energy but not particles,
in the long-time limit. In our paper, the particles do indeed
exchange between the partitions, which is the reason why this
quantity is time dependent. For a short introduction into the
framework of observational entropy, see Appendix.
In all cases, we take the initial state to be a random pure
thermal state (RPTS) (also known as thermal pure quantum
or canonical thermal pure quantum state [55–57]), which we
define as

|ψ〉 = 1√
Z

∑
E

cE e−βE/2|E〉, (4)

where |E〉’s are the eigenstates of the total Hamiltonian,
computed using exact diagonalization. The coefficients {cE }
are random complex or real numbers, cE ≡ (xE + iyE )/

√
2,

and cE ≡ (xE + yE )/
√

2, respectively, which leads to what
will refer to as the complex or the real RPTS, with xE and
yE obeying the standard normal distribution N (0, 1), and

Z = ∑
E |cE |2e−βE is the normalization constant. These states

emulate a thermal state, while being pure. They are then
evolved as |ψt 〉 = e−iĤt |ψ〉.
We would like to point out that in the high-temperature
limit, the observational entropy SxE of such a state is at all
times smaller than the canonical entropy Sth ≡ −tr[ρ̂th ln ρ̂th],

where ρ̂th = e−βĤ

Z and Z = tre−βĤ is the partition function.
But in the long-time limit and for this type of initial state, SxE

will grow to a value that is very similar to Sth. (See Appendix
and Ref. [17] for more detail; this behavior will be illustrated
in Figs. 5 and 7.)

III. DISTRIBUTION OF FLUCTUATIONS IN ENTROPY

In this section, we explore downward and upward fluctua-
tions in entanglement and observational entropy and the states
achieving extreme values in entropy.

First, we plot histogram of fluctuations in entanglement
(Fig. 2) and observational entropy (Fig. 3), in a system of size
L = 16: starting from a complex RPTS, the system is evolved,
and at each small fixed time step we read out the value
of entropy. Evolving for a long time, we therefore achieve
sufficient statistics that tells us how likely it is to find any
given value of entropy.

We can also ask what the minimum and maximum values
of entropy are, given infinite time. Due to the exponential sup-
pression of these extreme values, histogram cannot provide
this minimum; we therefore use a minimization algorithm,
explained below, and add the results to the histogram (orange
and blue vertical lines in Figs. 2 and 3).

To find the extreme values of entropy, we use the simplex
search algorithm [58]. For a given L and β, we initialize the
state in the same complex RPTS as the one we used to create
the histograms in Figs. 2 and 3. We then find the maxima
and minima for this initial state by maximizing over phases
φE = Et . As long as ratios of E ’s are irrational (or close to
being irrational), this method must give the same result as
maximizing over all times t .

For each histogram, we provide three heat maps, displaying
the particle density (〈ni〉, i = 1, ...L) on the lattice sites for
states of maximal, average, and minimal entropy.

A. Entanglement entropy

We can see that entanglement entropy achieves a minimal
value that is very close to zero. We plot the heat map (below
the histogram in Fig. 2) of the particle density of the state
that corresponds to this minimum. We can see that in this
situation, the particles moved almost entirely into the bath,
thus naturally producing a separable state |ψmin〉 ≈ |0〉A ⊗
|ψ〉B, where |0〉A denotes vacuum in the subsystem. One might
think that an alternative state |ψmin〉 ≈ |ψ〉A ⊗ |0〉B, could also
lead to zero entanglement entropy. However, as it is explained
in the Sec. VI, one cannot cluster all particles in a small region
when starting in a RPTS.

On the other hand, the state with maximum value of entan-
glement entropy is the one where the subsystem and the bath
contain the same average number of particles. The smaller
region therefore has a higher density of particles, as illustrated
on the heat map. Intuitively, there have to be some particles in
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i:

FIG. 2. Semilog probability histogram of entanglement entropy,
Sent . The y axis represents the probability of finding the state at any
given value of the entropy represented on the x axis. The heat maps
display the particle density (〈ni〉, i = 1, ...L) on the lattice sites. The
left tail of the histogram, representing the downward fluctuations in
entropy, can be fitted with a linear function: This shows that fluctu-
ating to small values is exponentially suppressed in this data set. The
blue vertical line on the left is the minimum value the entanglement
entropy can achieve, and is found using a minimization algorithm.
This value is very close to zero. The heat map below shows the
particle density on the lattice of the state that corresponds to this
minimum. We can see that in this situation, the particles moved
almost entirely into the bath, thus naturally producing a separable
state. The orange vertical line on the right is the maximum value of
the entanglement entropy, and is also obtained by the minimization
algorithm. The heat map above shows the particle density on the
lattice of the state that corresponds to this maximum. In this situation,
both the subsystem and the bath have the same number of particles,
hence we see a higher density of particles in the subsystem. The state
that gives the maximal entanglement entropy, is very far from the
thermal equilibrium state.

the subsystem and some in the bath for any correlations to
exist, and to create the maximum correlation there should be
the same amount of particles on either side. As can be seen
from comparing the heat maps in Fig. 2, the state that has
the maximum entanglement entropy is quite different from
the thermal equilibrium state, where particles are distributed
uniformly.

B. Observational entropy SxE

The minimum in SxE is achieved by simply localizing the
particles in one of the regions to the extent possible (it does not
matter significantly which one, as they all give almost equal
entropy; however, if one of the regions was smaller than the
others, it would localize into this smallest region). The mini-
mal value of SxE never goes below about half of the maximal
entropy; this, again, has to do with the inability to cluster all
particles in a small region, when starting in an RPTS (see
Sec. VII for a better intuition). The maximum of SxE is given

i:

FIG. 3. Similar to entanglement entropy, downward fluctuations
of SxE to small values is exponentially suppressed in this data set.
However, in contrast to entanglement entropy, the minimum of SxE

represented by the blue vertical line on the left does not go to zero;
it is at about 63% of the maximum value. This is because it is
impossible to localize the particles entirely into the small region,
and the remaining regions still contribute significantly to the total
entropy. As one can see from the heat map of the state corresponding
to the minimum, a significant number of particles moved into one of
the partitions of size four sites, resulting in partitions being far from
thermal equilibrium from each other. The vertical lines represent the
minimum, the average, and the maximum of SxE from left to right.
The heat map above shows the uniform distribution of particles for
such state. In contrast with entanglement entropy, the states that give
the average and maximal values of SxE are very similar to each other,
as one would expect from the behavior of Boltzmann entropy.

by a state where particles are uniformly distributed across all
regions. SxE is therefore in accordance with the Boltzmann
entropy, in contrast to entanglement entropy.

IV. DEPENDENCE OF EXTREME VALUES ON THE
SYSTEM SIZE

Next, we study the dependence of the minimum, maxi-
mum, and mean values of entropy on the system size. The
minimum and maximum values are found using the minimiza-
tion algorithm as in Figs. 2 and 3, and the average value is
found by evolving the system for a long time.

A. Entanglement entropy

These values are shown for entanglement entropy in Fig. 4.
The size of the subsystem is kept fixed at �x = 4 while
the system size (and hence the bath size) is varied such that
8 � L � 28. The number of particles and inverse temperature
are kept fixed at Np = 2 and β = 0.01, respectively. For each
L, we initialize the state in six different complex RPTS,
and then find the minima, maxima, and average values of
entropy for each one of them. We plot the mean value of these
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FIG. 4. The minimum (blue dots), maximum (orange circles),
and average (green stars) values of entanglement entropy is com-
puted for six different initial random states (complex RPTSs); the
mean and standard deviation of these six values are illustrated in
this figure for various system sizes. Sent (min) approaches zero in the
limit of large L: Disentanglement of the two regions is mostly done
by moving the particles into the bath and emptying the subsystem
and, in this limit, almost all particles are in the bath and none in
the subsystem. Hence Sent (min) reaches zero. In contrast, Sent (max)
is independent of L (and hence the size of the bath): Maximum
entanglement is achieved when particles are equally distributed
in each region, and enlarging the bath, given this distribution of
particles, does not affect the entanglement entropy of the system.
Sent (ave) decreases with L, and is expected to approach zero for large
system sizes as almost all particles on average would be in the bath
when the system is large and the subsystem is small. We also plot the
thermodynamic entropy Eq. (6) of the subsystem during equilibrium
(red dashed line), which is expected to equal Sent (ave) in the limit of
large system sizes and high temperatures [see Eq. (6)]. Noticeably
lower value of Sent (ave) (by about ln 2) for L = 8 = 2�x is due to
Page curve [57]. We stress that maximal entanglement entropy does
not equal the average.

six minima, maxima, and average, as well as the standard
deviation (denoted as error bars), for a given system size L.

We see the decrease in minimum entanglement entropy
in Fig. 4 with increasing system size L. As we discussed in
the previous section in relation with Fig. 2, the entanglement
between the subsystem and the bath is reduced mostly by
moving all the particles into the bath. It is clear that as
the bath (of size L − �x where �x is fixed) gets larger, it
becomes easier to cluster all the particles in the larger bath,
which makes the subsystem emptier, thus creating a state that
resembles very closely a product state, and thus has a very
small entanglement entropy.

It is important to emphasize that reduction in entanglement
entropy is not achieved through disentangling the particles,
but by disentangling the regions through the means of par-
ticles hopping and emptying the smaller region. Therefore,
the following question is raised: How much entropy would
be reduced if particles’ hopping between the regions was
forbidden? A simulation of this case—where the hopping
terms between the two regions are zero—revealed that the

reduction of entanglement entropy is much smaller: about a
20% reduction.

The upper bound on maximum of entanglement entropy
was derived in Ref. [59] for closed, fermionic, and bosonic
systems. Specifically, in Fig. 4, where a (one-dimensional)
fermionic lattice is considered, we have

Sent (max) � ln
Np∑

nA=0

min

{(
�x

nA

)
,

(
L − �x

Np − nA

)}
. (5)

In the case of Np = 2 and �x = 4 explored in Fig. 4,
Sent (max) achieves exactly this upper bound at ln 6 = 1.79.
The upper bound (5) is independent of the size of the bath
in the limit of large L, which explains the constant maximum
value in Fig. 4 (the large L in this case is already L � 12, and
L = 8 coincidentally gives the same value).

We should also note that, based on relation (5) found in
Ref. [59], one can see that this upper bound only depends on a
few parameters, namely the size of the total system, size of the
subsystem, the total number of particles (which is assumed to
be fixed), and the assumption that the system is pure. Hence, it
does not matter where the subsystem or bath is placed inside
the system (for example in the middle or at the edge of the
lattice).

The average entanglement entropy in the high temperature
limit should be approximately equal to the thermodynamic
entropy of the subsystem [5,44,60], which is a fraction of the
total thermodynamic entropy,

Sent (ave) ≈ Sth(A) ≈ �x

L
Sth(A + B), (6)

where Sth is computed as the von Neumann entropy of a
thermal state, i.e., Sth(A + B) = −tr[ρ̂th ln ρ̂th] for the full
system, where ρ̂th = e−βĤ

Z and Z = tre−βĤ is the partition

function, while Sth(A) = −tr[ρ̂ (A)
th ln ρ̂

(A)
th ] where ρ̂

(A)
th = e−βĤA

Z
for the reduced system. Relation Eq. (6) has been confirmed
in various numerical simulations [6,7,61]. We see that this
prediction, plotted as a red dashed line in Fig. 4, fits quite well
with the data. (The relation (6) is only approximately true in
the high-temperature limit and not the low-temperature limit,
as is discussed in Refs. [62,63].)

Comparing the maximum value of entanglement entropy
with the average, we note that Sent (max) is constant while
Sent (ave) decreases with L. This is expected, since the average
state spreads the particles uniformly over the entire system
(creating less entanglement between the subsystem and the
bath) while maximizing entanglement entropy maximizes
correlations by putting about half of the particles in the
subsystem, independently of the total system size. This adds to
Fig. 2 in demonstrating the difference between states leading
to the average and the maximal entanglement entropy.

B. Observational entropy SxE

Using the same procedure, we find the mean values of
minima, maxima, and averages of SxE, and their variances, and
plot them as a function of the system size in Fig. 5. Partitions
have equal sizes fixed at �x = 4 and the system size L (and
therefore the number of partitions m = L

�x ) is varied.
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FIG. 5. The minimum (blue dots), maximum (orange circles),
and average (green stars) values of observational entropy SxE is
computed for six different initial random states (complex RPTSs);
the mean and standard deviation of these six values are illustrated in
this figure for various system sizes. Partitions have equal sizes fixed
at �x = 4. All SxE(min), SxE(ave), SxE(max) increase with L, and
SxE(ave) ≈ SxE(max) are approximately equal the thermodynamic
entropy of the full system Sth(A + B), as expected from the theory.

The minimum values of observational entropy SxE reduces
to about a half of its maximum value independent of the sys-
tem size, as long as it is large. These values could be indirectly
estimated by simply assuming that the spatial localization
is key in minimizing the entropy [see Fig. 9 and Eqs. (7)
and (8)].

The maximum value of SxE is almost exactly the same
as the thermodynamic entropy of the full system, and very
close to the average value of SxE. This is expected from the
theory Ref. [17] that shows SxE(ave) � SxE(max) � Sth, and
SxE(ave) differs from thermodynamic entropy Sth by order-
one corrections (that depend on the energy distribution of
the initial state), by ln N corrections (that depend on how
close the initial state is to the thermal state), both of which
become irrelevant in the thermodynamic limit, and by finite-
size corrections (coming from interaction energy between
partitions), which become irrelevant when partitions are large
enough.

V. DEPENDENCE OF EXTREME VALUES ON
TEMPERATURE

In this section, we look at the dependencies of the average
and both extremes of Sent and SxE on inverse temperature β.
Each data point in Figs. 6 and 7 are computed by taking the
mean of the min, max, and average entropies over six dif-
ferent complex RPTSs. We also included the thermodynamic
entropy of the subsystem, Sth(A), and of the total system,
Sth(A + B), in Figs. 6 and 7, respectively.

A. Entanglement entropy

Figure 6 plots the entanglement entropy versus β. As
one would expect, there are high fluctuations in the low β

FIG. 6. The minimum (lower blue stars), maximum (orange up-
per stars), and average (green middle stars) values of entanglement
entropy is computed for six different initial random states (complex
RPTSs); the means of these six values are illustrated in this figure
for various inverse temperatures, β. We take L = 16, �x = 4, and
Np = 2. In low β limit, Sent (ave) follows the volume law, and is
approximately equal the thermodynamic entropy of the subsystem
Sth(A). In high β limit, the initial state is practically the energy
ground state, and therefore it does not evolve, so all values coincide,
at a value given by the area law.

(high-temperature) limit. In this limit, the average entan-
glement entropy coincides with the thermodynamic entropy
of the subsystem, which is known as the volume law [57].
Both maximal and minimal entanglement entropy diverge
from the average at low β, and are almost constant in this
limit: Sent (max) ≈ 1.79 (which is the high-temperature limit
obtained previously in Fig. 4), and Sent (min) ≈ 0.05. There
are almost no fluctuations in the opposite high β (low-
temperature) limit, where the thermal state is almost identical
to the ground state, and therefore it does not evolve. The
entanglement entropy approaches a constant value given by
the area law [15,64,65]. The difference between entanglement
entropy and thermodynamic entropy is discussed in more
detail in Ref. [63].

B. Observational entropy SxE

Figure 7 plots the observational entropy SxE versus β, and
we took the same settings as with entanglement entropy. One
can notice two interesting features in this graph.

First, values of SxE at high β (low-temperature) limit are
quite large, and do not seem to follow the Sth(A + B) anymore.
The fact that the SxE is not zero in this low-temperature
limit is because measuring position does not commute with
measuring energy. By measuring the position of the ground
state, which is highly nonlocal, one would add a lot of energy
to it, as well as uncertainty in energy. Therefore, since SxE

measures the total uncertainty when measuring the position
first and then energy, this total uncertainty will be large. SxE

can be also interpreted as a thermodynamic entropy of the
system, as if the numbers of particles in each bin were fixed,
but the energy between the bins was still allowed to exchange
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FIG. 7. The minimum (blue lower stars), maximum (orange up-
per stars), and average (green middle stars) values of observational
entropy SxE is computed for six different initial random states
(complex RPTSs); the means of these six values are illustrated
in this figure for various system sizes. We take L = 16, �x = 4,
and Np = 2. In low β limit, SxE(ave) ≈ SxE(max) ≈ Sth(A + B), and
SxE(min) has the same shape, and about a half of the maximum
value, as expected from Eqs. (7) and (8). All values coincide in the
high β limit where the initial state is practically the energy ground
state. Its higher value compared to Sth(A + B) is expected from the
fact that measuring the position of this highly nonlocal state first
creates a large uncertainty in energy, and therefore also large SxE.
The dip in SxE(min) is the result of two competing factors: Higher
temperature results in higher entropy on average, but also higher
ability of the system to localize, and therefore possibly lower values
of SxE. β ≈ 0.5 is the lowest possible temperature such that the state
can localize in one of the bins of size �x = 4.

[16–18]. It therefore makes sense that the value of this entropy
is relatively large, since by measuring the position we fix the
number of particles in each bin, and this state has a relatively
large thermodynamic entropy. This effect gets to be smaller
(SxE for high β is smaller), when size of the partition �x
becomes large compared to the size of the full system, since
position measurement does not affect energy as much in that
case. We note that this is a purely quantum effect, however,
switching the order of coarse-grainings (while taking some
small coarse-graining of width �E in energy as well), SEx

leads to an entropy that is bounded above by Sth(A + B)
even at such low temperatures. (See Appendix for details.)
This is because measuring energy of a ground state does
not affect this state at all, and additional measurement in
position does not add any new information (see Theorem 8 in
Ref. [17]). This effect was not noted in the original paper [17],
mainly because defining microcanonical entropy at such low
temperatures is problematic, as the energy density of states is
not well defined.2

2Figure 7 in Ref. [17] does not show SxE nor microcanonical
entropy for really low nor really high energies E .

The second interesting feature of this graph is the dip in
SxE(min) at β ≈ 0.5. This dip is a result of two competing
factors: first, by increasing the temperature, we increase the
ability of the system to localize. Generally, localizing the
system in one of the partitions leads to a decrease in SxE (see
Sec. VII). Thus, with high enough temperature, the system
is able to localize in one of the partitions of size �x = 4 and
decrease the entropy. However, further increasing temperature
does not help in decreasing SxE(min) anymore, as the further
ability to localize is already below the resolution of the
positional coarse-graining in SxE, and its only effect is then an
increase in the total thermodynamic entropy, and hence also
an increase SxE(min).

That is also why we see the increase in SxE(min) for
really high temperature (low β), in a shape that approximately
follows Eqs. (7) and (8).

VI. MAXIMAL PROBABILITY OF LOCALIZATION

In this section, we show numerically that the result of
Deutsch et al. [47]—shown analytically for a toy model with
random energy eigenvectors as well as for a nondegenerate
weakly interacting gas—holds true for a physical system of
a fermionic lattice. We do this because in Sec. VII we would
like to use this result to explain the connection, already hinted
at in the previous sections, between the spatial localization
and the minimization of entropies.

In particular, Deutsch et al. showed that starting from a
RPTS, under certain conditions, the maximum probability
Pmax ≡ P(N,0) that all particles are localized into the subsystem
of interest is 1/2 in the case of initial real RPTS and π2/16 in
the case of complex RPTS. This, as shown in Sec. VII, is key
in minimizing SxE.

We are going to require that the same conditions as in
Ref. [47] to be satisfied: The first condition is that the di-
mension M of the subspace X (the subspace of Hilbert space
associated with “all particles being in the subsystem of inter-
est”) is much smaller than the dimension N of the full system,
N 	 M2, which can be, for example, satisfied in the case of
dilute gas (small number of particles) when the size of the
subsystem of interest �x into which we localize the particles
is much smaller than the size L of the full system, L 	
�x. At the same time, the second condition is that the size
of the subsystem is much larger than a thermal wavelength
(specified below), �x 	 λT . The third condition is that the
size of the subsystem of interest, �x, is also much greater than
the scattering length, i.e., we consider the Hamiltonian with
only local interactions, leading to a weakly correlated system.
However, unlike what is used in Ref. [47]—in which the
energy eigenstates of the toy model are randomly distributed
or are that of a non-degenerate weakly interacting gas – in our
case the energy eigenstates are that of a Hamiltonian modeling
a fermionic lattice.

First, we investigate the second condition, �x 	 λT in
more detail. At any value of β, there exists a spatial scale
known as the thermal wavelength such that λT ∝ √

β (for

example, in the case of an ideal gas, λT = 2h
√

β

2m ). Quali-
tatively, λT is the minimum size of quantum wavepackets that
describe the particles in a given system at a given temperature.
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Because of this relation between λT and
√

β, we can focus on
the dependence of Pmax on

√
β.

Therefore, in Fig. 8(a), we study the maximum probability
Pmax of localization for different values of

√
β while fixing

the size of the box �x. We localize in the region of size �x =
5, and use the lattice sizes L = 10, 20, and 30, with Np = 3
particles inside. We do this for both real and complex initial
RPTSs.

We see that for cold systems (high β), the probability of
localization is very small, in fact, Pmax approaches zero. This
is in accordance with the result of Ref. [47] which asserts that,
in the limit of large

√
β such that �x � λ, Pmax ∝ ( �x

λT
)Npd/2

where d is the dimension of the lattice (in our case d = 1).
Intuitively, since λT is the minimum size of quantum wave
packets, it makes sense that one can not localize the wave
function in a subspace smaller than this length scale.

For hot systems (low β), the probability of localization
Pmax achieves high values. One notices that for small systems,
e.g., L = 10, the gap between Pmax for the real and complex
wave functions disappears. This is trivial, since in this case,
the size of the subsystem of interest is becoming comparable
to that of the full system, and therefore it is very easy to
localize all particles in it. For larger system sizes, e.g., L =
20, 30 all three conditions stated above are satisfied, and Pmax

approaches constant values of ∼1/2 in the case of real RPTSs
and ∼π2/16 in the case of complex RPTSs. The low β regime
is further explored in Fig. 8(b).

To generate this graph, we used the same algorithm to
maximize probability as the one used in Ref. [47], and β =
0.01. We start in 100 different real and complex RPTSs, and
for each one of them we perform the maximization procedure.
We use three fermions and choose the small region to be
�x = 5 sites. Pmax is plotted as a function of N/M2 for both
cases of complex and real RPTSs.

As one can see, when the system is hot enough, it is
possible to localize all the particles into the small region,
and the probability that we find them there is at most 1/2
and π2/16 for real and complex RPTSs, respectively. The
presence of some fluctuations is expected since our model
is a real system with nonrandom energy eigenvectors. This
numerically confirms that the results of Deutsch et al. [47]
also holds for a realistic quantum thermodynamic system such
as ours, and we can apply this result in the next section.

VII. ROLE OF LOCALIZATION IN EXTREME
VALUES OF ENTROPIES

In Figs. 2 and 3, we showed that minimizing entanglement
and observational entropy leads to a substantial probability
of localization in the larger and smaller regions respectively.
In this section, we investigate what happens to entanglement
entropy when one localizes particles into the small region
as opposed to the bath, and the extent to which the spatial
localization plays a role in minimizing the SxE.

We compute entropies of localized states, for �x = 4
and varying system sizes L. We consider Np = 2 particles
in the system, and temperature is fixed at β = 0.01, so the
three conditions from the previous section are satisfied. For
each L, we start in six initial complex RPTSs, and local-
ize them into a physical region of fixed size �x = 4, by

(a)

(b)

FIG. 8. (a) Maximum probability Pmax of localizing all particles
in the middle five sites for real (crosses) and complex (stars) initial
RPTSs, in a lattice of size L = 10 (blue diamonds), 20 (green
squares), and 30 (red circles), with three particles as a function of√

β. This plot illustrates that at low β, Pmax approaches different
constant values for real (0.5 red lower line) and complex (π2/16
black upper line) RPTSs when the system size is large enough. In
the same limit, Pmax approaches unity for smaller systems. For higher
values of β, Pmax approaches zero independent of system size. (b) The
maximal probability Pmax is computed for a range of dimensions of
Hilbert space N , while M—dimension of the subspace of the Hilbert
space associated with “all particles in the localized region”—is kept
fixed. Hence the size of the physical region in which particles are
localized in is kept fixed as well, at �x = 5 sites. For each N ,
we start in 100 different real and complex RPTSs with the same
temperature, and plot the mean and standard deviation of Pmax (the
red lower set of bars as real and the upper set of black bars as
complex). This plot indicates that in the limit of large system sizes,
the maximum probability of localization of all particles into a small
region approaches ∼0.5 (red lower line) in the case of real initial
states and ∼π 2/16 (black upper line) in the case of complex initial
states.
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FIG. 9. Np = 2 particles are localized in the first four sites for
varying system sizes L. SxE and Sent of such a state (i.e., when
Pmax is achieved) are computed and are respectively named SxE(loc)
and Sent (loc). This is done for six different complex RPTSs. What
isare illustrated here is the mean and standard deviation of these six
values. For comparison purposes, minimum values of SxE achieved
using optimization algorithm, SxE(min), are also plotted. Comparing
these minima with corresponding SxE(loc) for each system size, one
finds that these values are relatively very close to each other. This
is evidence of the key role of spatial localization in minimizing
observational entropy. In contrast, entanglement entropy grows to a
constant value. This is related to the fact that entanglement entropy
depends heavily on the distribution of particles for a given state.
When the probability of localization is maximized for large system
sizes, this distribution is fixed and independent of system size. We
therefore expect entanglement entropy of such localized states to also
reach a constant value independent of system size.

maximizing probability Pmax for each initial state. We then
compute the mean values and standard deviations of Sent

and SxE of such localized states, and plot them in Fig. 9.
The mean values of Pmax (averaged over six initial RPTSs)
for system sizes of L = [8, 12, 16, 20, 24, 28] are Pmax =
[0.90, 0.73, 0.67, 0.67, 0.65, 0.63].

SxE(loc) is very close to the minimum SxE(min) (discussed
in detail in Fig. 9), showing that spatial localization is key in
minimizing SxE. The theory predicts [47]

SxE(loc) = Sth(L, Np, β )

− PmaxNp ln L
�x − (1 − Pmax)Np ln L

L−�x

− Pmax ln Pmax − (1 − Pmax) ln(1 − Pmax),

(7)

for large L (where Sth(L, Np, β ) ≡ Sth(A + B)), which is
bounded below by

SxE(loc) � (1 − Pmax)Sth(L, Np, β ), (8)

which shows that SxE(loc) cannot fall below a certain fraction
of the total thermodynamic entropy of the system. Eq. (8) is
plotted as a dashed line in Fig. 9 and as expected from Eq.
(8), the ratio R = SxE(loc)/Sth(A + B) remains approximately
constant for large L.

The fact that SxE(loc) and SxE(min) are almost the same
and that SxE(min) is bounded by a fraction of thermodynamic

entropy also explains why the minimum of SxE in Fig. 3 does
not go to zero, and why SxE(min) in Fig. 7 goes upward for
small β (in the case of low β Pmax = π2/16).

VIII. DISCUSSION AND CONCLUSION

In this paper, we have demonstrated the significantly differ-
ent behavior of extreme values of entanglement and observa-
tional entropy by illustrating the behavior of these entropies
in and out of equilibrium and at different temperatures in
an isolated quantum system. In particular, we show that ob-
servational entropy behaves similarly to Boltzmann entropy,
even in its extreme cases, i.e., far from equilibrium, while
entanglement entropy does not. Indeed, these entropies pertain
to rather different physical features: Observational entropy has
the ability to quantify localization of particles and energy,
while entanglement entropy measures nonlocal correlations
for systems both in and out of equilibrium.

With regard to extreme values, we found that starting from
a RPTS, Sent can reach values very close to zero during the
course of a unitary evolution, whereas there exists a nonzero
lower bound for SxE. We showed how these minimal values
of the two entropies are achieved through localization in the
larger and smaller region for Sent and SxE, respectively.

We found that in the high-temperature limit, the maximum
entanglement entropy between a smaller subsystem and the
rest of the system becomes very large in comparison with
typical values, and this ratio grows with system size. This is
because the typical value is the thermodynamic entropy for the
smaller subsystem, which will tend to zero as total system size
increases (at fixed particle number and subsystem size) but the
maximum Sent goes to a constant independent of total system
size. On the other hand, the maximal observational entropy
stays close to its typical value. The latter is qualitatively
similar to classical Boltzmann entropy: The average—which
is close to the most likely state—should be assigned a very
high entropy.

The particle distribution given a state with maximum en-
tanglement or observational entropy is also markedly dif-
ferent: in the former case, the particles distribute them-
selves throughout the lattice such that the average number
of particles in the subsystem is equal to that of the bath, in
pursuit of maximizing correlations between the two subsys-
tems whereas, in the latter case, particles tend to distribute
themselves uniformly, similar to what happens at thermal
equilibrium.

These findings are illustrated in Fig. 10. In particular,
Figs. 10(a) and 10(b) show entropies for various types of
macrostates described by their particle density, in order of
smaller to higher entanglement and observational entropy,
respectively. From the Boltzmann point of view, the size of
the macrostate is determined by the number of microstates
corresponding to the same macroscopic appearance: In this
figure, the size of the macrostate � is the number of orthog-
onal quantum states that give the same distribution of particle
density.

One notices that higher entanglement entropy does not
necessarily mean that the macrostate is larger—the size of
the macrostate appears to be rather unrelated to the amount
of entanglement entropy. Specifically, it would be more likely
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FIG. 10. This illustration shows entropies for various types of
macrostates described by distributions in their particle density, in
order of smaller to higher (a) entanglement entropy and smaller
to higher (b) observational entropy. This is done as follows: We
compute different types of microstates: state (1) of minimal SxE ,
state (2) of maximal Sent , state (3) of minimal Sent , and equilibrium
state (4)—which is practically identical to the state of maximal SxE .
We then plot their particle density and the percentages of the total
number of particles in each subsystem. Each distribution of particle
density defines a macrostate. The number of microstates that would
lead to the same distribution of particle density defines the size of the
macrostate and is denoted �. The Boltzmann entropy of a macrostate
is then defined as SB = ln �. In (a), the bottom lattice corresponds to
the case of state (3) of minimal Sent: most particles are localized in the
bath, and as a result the size of this macrostate is large compared to
the other cases. The top lattice corresponds to the case with the state
(2) of maximal Sent: in this case the average number of particles in the
bath is the same as the average number of particles in the subsystem.
This configuration is different than that of the equilibrium state
(4), in which case particles are distributed uniformly. In (b), larger
macrostates correspond to larger observational entropy, showing
correspondence with Boltzmann entropy SB = ln �.

to observe a state with minimal entanglement entropy as
compared to the maximal entanglement entropy (as the former
has a larger macrostate). The size of the macrostate and the en-
tropy of the state match for the case of observational entropy,
showing that (quantum) observational entropy matches well
with the classical conception of Boltzmann entropy.

It should be noted that in this paper we focused on bipartite
entanglement entropy, since it is very often used in litera-
ture. One could argue that multipartite entanglement entropy,
defined as the sum of local von Neumann entropies, could
behave similarly to SxE and be more Boltzmann-like, meaning
that the larger macrostates have associated higher values of
entropy.3

Because of its close relation to Boltzmann entropy, ob-
servational entropy could accompany the entanglement en-
tropy to better understand the concept of thermalization in
isolated quantum systems and to illuminate the behavior of
out-of-equilibrium states which lie at the heart of statistical
mechanics. This entropy is also rather new in the field of
quantum thermodynamics and hence further work on this
particular entropy is of interest.

Experimentally, for example, observational entropy could
be measured without the need to access the density matrix and
be useful in quantifying how thermalized a given state is. The
extreme values of this entropy could possibly be probed as
well, for extremely small systems such that the time it takes
to reach these values is reasonably small and within reach in
laboratories.

Finally, on a cosmological level, discussions of entropy and
the arrow of time (e.g., Refs. [66–71]) require a definition that
applies to a truly closed system (like the universe), out of
equilibrium, and potentially for indefinitely long timescales
over which large entropy fluctuations might occur. These
discussions often employ an “informal” definition of entropy
that in practice mixes different notions. Observational entropy
applies in this context and is rigorously defined, and therefore
may be very useful in these discussions. (The primarily re-
maining obstacle being a lack of understanding of the state
space of gravity and space-time.) Could this definition of
entropy, for example, tell us something new about the arrow of
time in isolated quantum systems and about how to understand
extreme entropy fluctuations in the context of the arrow of
time?

Extending this work to other types of observational en-
tropies that are in accordance with thermodynamic entropy
(such as factorized observational entropy [17]) would be of
interest as well. This could give us a broader understanding of
this definition of entropy and shed some light on nonequilib-
rium many-body quantum systems.
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APPENDIX: SHORT INTRODUCTION TO
OBSERVATIONAL ENTROPY

Observational entropy is a generalization of Boltzmann
entropy into quantum systems. It was mentioned but not de-
veloped by von Neumann in 1929 [19,20], then more recently

3This property would, however, be dependent upon having equally
sized regions, and the equivalence would break even when the size
of a single region is different from others.
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rediscovered, developed, and generalized to include multi-
ple (even non-commuting) coarse-grainings, and connected
to thermodynamics in Refs. [16,17], using the following
construction:

Let us assume that the Hilbert space can be decomposed
into a direct sum of orthogonal subspaces H = ⊕

i Hi, where
each subspace corresponds to a macrostate specifying a single
macroscopic property of the system (such as energy or number
of particles). Defining projector P̂i as the projector onto a
subspace Hi, the set C = {P̂i} forms a trace-preserving set
of orthogonal projectors, denoted as coarse-graining. The
probability that a quantum state ρ̂ is in a given macrostate can
be calculated as pi = tr[P̂iρ̂]. Equivalently, we can say that
this is the probability that a system described by a quantum
state ρ̂ will be found having a value i of a macroscopic
property defined by the coarse-graining, when performing a
coarse-grained measurement on it in the basis given by the
coarse-graining.

Assuming that an observer cannot distinguish between dif-
ferent microstates k within the same macrostate i with his/her
macroscopic measurement, one associates the same probabil-
ity p(k)

i = pi/ dim(Hi ) = pi/tr[P̂i] to every microstate (given
by a pure quantum state) in the macrostate. Given this inability
to distinguish between different microstates within the same
macrostate, we consider the Shannon entropy of the probabil-
ities p(k)

i ,

SO(C) ≡ −
∑
i,k

p(k)
i ln p(k)

i = −
∑

i

pi ln
pi

tr[P̂i]
, (A1)

This defines observational entropy with a single coarse-
graining.

A generalization of this quantity for multiple coarse-
grainings that allows many of its properties to be retained is

SO(C1,...,Cn ) ≡ −
∑

i

pi ln
pi

Vi
, (A2)

where multi-index i = (i1, . . . , in) denotes a set of macro-
scopic properties, pi is the probability of these prop-
erties being measured (in the given order), and Vi =
tr[P̂in · · · P̂i1 · · · P̂in ] denotes a joint Hilbert space volume of
all systems that have properties i = (i1, . . . , in) measured in
this order. Equivalently, we can call Vi the volume of multi-
macrostate i.

An important property of SO is that it depends on the order
of coarse-grainings, and that for any ordered set of coarse-
grainings (C1, . . . , Cn) and any density matrix ρ̂,

SVN (ρ̂) � SO(C1,...,Cn )(ρ̂) � ln dimH, (A3)

SO(C1,...,Cn )(ρ̂) � SO(C1,...,Cn−1 )(ρ̂). (A4)

In other words, this means that observational entropy is lower
bounded by the von Neumann entropy, which can be inter-
preted as an inherent uncertainty in a quantum system, upper
bounded by the maximal uncertainty in the system, and that
with each added coarse-graining, the observational entropy
does not increase. These properties show that observational
entropy can be interpreted as an observers’ uncertainty about

the system, given that all one can do is to perform a set of
macroscopic measurements on this system.

Despite the intuitive interpretation of this general quantity,
its physical meaning depends upon the coarse-graining. Sev-
eral pertinent examples we have identified are as follows.

First is a coarse-graining in energy, CE = {P̂E }E , where
P̂E is a projector onto a subspace associated with eigenvalue
E of the Hamiltonian Ĥ (for nondegenerate Hamiltonians,
P̂E = |E〉〈E | is a projector onto a single energy eigenstate).
Observational entropy SE ≡ SO(CE ) then gives the equilibrium
value of the thermodynamic entropy. For example, for a mi-
crocanonical state ρ̂micro = 1

N (E )

∑
E�Ẽ<E+�E |Ẽ〉〈Ẽ | it gives

the microcanonical entropy,

SE (ρ̂micro) = ln(N (E )) = ln(ρ(E )�E ) = Smicro(E ), (A5)

where ρ(E ) denotes the energy density of states, while for
the canonical state ρ̂th = 1

Z exp(−βĤ ) it gives the canonical
entropy:

SE (ρ̂th) = ln Z + β〈E〉 = SVN (ρ̂th) = Sth. (A6)

A second example, leading to time dependence while
still pertaining to thermodynamics, is the coarse-graining
in local Hamiltonians, CĤ1

⊗ · · · ⊗ CĤm
= {P̂E1,...,Em}, where

P̂E1,...,Em = P̂E1 ⊗ · · · ⊗ P̂Em , Ĥj P̂Ej = EjP̂Ej , are projectors
onto local energy eigenstates. The resulting entropy SF ≡
SO(CĤ1

⊗···⊗CĤm ) then measures how close to equilibrium these
local regions are.

A third and closely related example is SxE, Eq. (3), which
is the main focus of this paper. This observational entropy,
coarse-grained first in local particle numbers, and then in
total energy, can be interpreted as entropy that an observer
would associate to a system where m partitions are allowed
to exchange energy but not particles, in the long-time limit.
In our paper, the particles do indeed exchange between the
partitions, which is the reason why this quantity is time
dependent. SF is upper bounded by thermodynamic entropy
(either canonical or microcanonical, depending on the spread
in energies) and converges to it in the long-time limit in any
nonintegrable closed quantum system, up to small corrections
(see Ref. [17]). SxE is upper bounded by thermodynamic
entropy and converges to it in the long-time limit only in
the high-temperature limit (as can be seen in Fig. 7). A
few other related entropies can be defined by considering a
finite resolution in energy; these come with some subtleties
and resolve some slight issues in the behavior of the current
definitions.4

4Note that switching the order of coarse-graining leads to an
entropy SEx that is always lower than the thermodynamic entropy
in both high- and low-temperature limits as per Eq. (A4), SEx �
SE (ρ̂) � Sth, but comes with its own set of problems (for example, it
associates zero entropy to any energy eigenstate.) This can, however,
be resolved by introducing a suitable resolution in measuring energy
�E (not too low and not too high), which then leads to an entropy
S(�E )

Ex that associates microcanonical entropy to energy eigenstates,
and an entropy that converges to SE (ρ̂) ≈ Sth in the long-time limit
for states that are superpositions of many energy eigenstates. The fact
that a suitable �E makes this entropy useful has only been discov-
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We chose to study SxE in this paper because it is signifi-
cantly easier to calculate and since, in most cases (especially

in the high-temperature limit), all SxE, SF , S(�E )
Ex behave quite

similarly.
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